检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
迁移评估 推理迁移包括模型迁移、业务迁移、精度性能调优等环节,是否能满足最终的迁移效果需要进行系统的评估。如果您仅需要了解迁移过程,可以先按照本文档的指导进行操作并熟悉迁移流程。如果您有实际的项目需要迁移,建议填写下方的推理业务迁移评估表,并将该调研表提供给华为云技术支持人员进行迁移评估,以确保迁移项目能顺利实施。
pTuning训练入口导入自动迁移工具 自动迁移适合没有使用CUDA高阶能力的简单场景,如果涉及自定义算子、主动申请GPU显存等操作,则需要额外进行手动迁移适配。 手动迁移解决报错问题。 在完成代码自动迁移后,如果训练代码运行时还出现错误,则代表需要手动迁移适配。针对代码报错处,需要用户分析定位后
发、模型训练、模型部署都可以在ModelArts上完成。从技术上看,ModelArts底层支持各种异构计算资源,开发者可以根据需要灵活选择使用,而不需要关心底层的技术。同时,ModelArts支持Tensorflow、PyTorch、MindSpore等主流开源的AI开发框架,也
迁移过程使用工具概览 基础的开发工具在迁移的预置镜像和开发环境中都已经进行预置,用户原则上不需要重新安装和下载,如果预置的版本不满足要求,用户可以执行下载和安装与覆盖操作。 模型自动转换评估工具Tailor 为了简化用户使用,ModelArts提供了Tailor工具,将模型转换、
训练网络迁移总结 确保算法在GPU训练时,持续稳定可收敛。避免在迁移过程中排查可能的算法问题,并且要有好的对比标杆。如果是NPU上全新开发的网络,请参考PyTorch迁移精度调优排查溢出和精度问题。 理解GPU和NPU的构造以及运行的差别,有助于在迁移过程中分析问题并发挥NPU的
2000行代码。4个中等复杂度算子,基于C++开发,平均每个自定义算子约500行代码。 - 动态shape 是否需要支持动态shape。 例如:需要动态Shape,需要动态Shape的模型有ResNet-50、YOLOv5。 - 参数类型(FP32/FP16) FP32还是FP16混合,判断精度调优难度。
Toolkit、昇腾驱动以及torch_npu包。具体操作,请参考昇腾商用版资源下载指导。 数据集。 需要排查是否使用的训练数据集存在差异。 初始权重。 需要排查是否加载的初始权重有差异,建议加载相同的初始权重。 父主题: PyTorch迁移精度调优
果相关命令不存在则需要参考工具安装指导自行安装。 表1 ModelArts昇腾迁移调优工具总览表 使用场景 类别 工具名称 工具描述 工具安装 使用指导 PyTorch GPU训练迁移至PyTorch NPU训练 训练迁移 Transfer2NPU 代码自动迁移工具,通过简单im
1434 SQL Server的TCP端口,用于返回SQLServer使用了哪个TCP/IP端口。 Oracle 1521 Oracle通信端口,弹性云服务器上部署了Oracle SQL需要放行的端口。 MySQL 3306 MySQL数据库对外提供服务的端口。 Windows Server
从DWS导入数据到ModelArts数据集 ModelArts支持从DWS导入表格数据,用户需要选择对应的DWS集群,并输入需要对应的数据库名、表名以及用户名和密码。所导入表的schema(列名和类型)需要跟数据集相同。DWS的详细功能说明,请参考DWS用户指南。 图1 从DWS导入数据
队列名称:系统自动将当前账号下的DLI队列展现在列表中,用户可以在下拉框中选择需要的队列。 数据库名称:根据选择的队列展现所有的数据库,请在下拉框中选择您所需的数据库。 表名称:根据选择的数据库展现此数据库中的所有表。请在下拉框中选择您所需的表。 DLI的default队列只用作体
Lite是华为自研的推理引擎,能够最大化地利用昇腾芯片的性能。在使用MindSpore Lite进行离线推理时,需要先将模型转换为mindir模型,再利用MindSpore Lite作为推理引擎,将转换后的模型直接运行在昇腾设备上。模型转换需要使用converter_lite工具。 Huggingface提供的
定位过程中,确定性计算不是目的,而是手段。很多场景下需要在确定性计算使能的情况下,进行下一步的精度问题分析定位。Cuda对部分算子实现了确定性计算,但仍有部分算子无法固定。通常需要依赖确定性计算的场景是长稳问题,因为长稳问题需要通过多次长跑来分析Loss情况,这时候如果NPU本身
实践,并对于实际的操作原理和迁移流程进行说明,包含迁移后的精度和性能验证、调试方法说明。 核心概念 推理业务昇腾迁移整体流程及工具链 图1 推理业务昇腾迁移整体路径 推理业务昇腾迁移整体分为七个大的步骤,并以完整工具链覆盖全链路: 迁移评估:针对迁移可行性、工作量,以及可能的性能收益进行大致的预估。
、容器级恢复与作业级恢复,提供容错与恢复能力,保障用户训练作业的长稳运行 提供训练作业断点续训与增量训练能力,即使训练因某些原因中断,也可以基于checkpoint接续训练,保障需要长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Tur
在某些推理场景中,模型输入的shape可能是不固定的,因此需要支持用户指定模型的动态shape,并能够在推理中接收多种shape的输入。在CPU上进行模型转换时无需考虑动态shape问题,因为CPU算子支持动态shape;而在昇腾场景上,算子需要指定具体的shape信息,并且在模型转换的编译
pipeline的主要作用是将onnx模型进行一系列编排,并在onnx Runtime上按照编排顺序执行。因此,需要将转换得到的mindir模型按照相同的逻辑进行编排,并在MindSpore Lite上执行。只需要将原始onnx的pipeline中涉及到onnx模型初始化及推理的接口替换为MindSpore
policy”设计原则,不同的pipeline是不同路径在独立演进的。请先确保应用输出符合预期后,再进入到MindSpore Lite模型转换的过程,否则迁移昇腾后还是会遇到同样的问题。 AOE的自动性能调优使用上完全没有效果怎么办? 在MindSpore Lite Convertor2.1版本
方式2:通过模型静态转换后,执行推理,又称离线推理。 通常为了获取更好的推理性能,推荐使用方式2的离线推理。下文将以Diffusers img2img onnx pipeline为示例来讲解如何进行离线推理模式下的昇腾迁移。迁移的整体流程如下图所示: 图1 迁移流程图 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
循环体 debugger.stop() # 一般在训练循环末尾结束工具。 debugger.step() # 在训练循环的最后需要重置工具,非循环场景不需要。 具体的config.json的配置要求请参见介绍。 使用run_ut.py执行预检。 msprobe -f pytorch