检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
包年/包月和按需计费模式哪个更划算 包年/包月和按需计费模式可针对不同业务需求进行选择: 对于长时间且稳定的业务需求,包年/包月模式通常更划算,因为它能提供更低的平均成本和一定的稳定性。 对于短期、突发或不可预测的业务需求,按需计费模式则更为合适,因为它提供了更高的灵活性和避免长期预付费可能带来的压力。 父主题:
你知道吗?熊爪面包竟然有这么多好处! 12.火爆网络的熊爪面包,你一定要尝试! 13.想吃又不想胖?试试这款熊爪面包吧! 14.熊爪面包,火爆销量的保持者! 15.【TOP5】熊爪面包,网红美食首选! 你是一个短视频博主,现在有一篇视频文案内容如下“熊爪面包 松松软软贼好吃”请结合以上内
该指令可以通过用户输入的问题,使大模型按要求生成一个难度更低、更为简单的问题。 问题改写为更高难度 该指令通过用户输入的问题,使大模型按要求生成一个难度更高、更为复杂的问题。 基于提问生成作答要求 该指令根据输入的问题,使大模型泛化一个相应问题的作答要求,该要求与原问题内容不直接相
的任务,越需要应用这些技巧来输出一个逻辑自洽、清晰明了的指令。 提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或回答的问题。如:“写一篇关于勇士的小说”、“天空为什么是蓝色的?”
"亲爱的小朋友们,你们好呀!今天我们要来聊一聊一条非常特别的大河——长江。长江是我们中国的一条非常长的河流,它从青藏高原出发,一直流到了上海,最后流入大海哦。长江好长好长,它是我们中国第一大河,也是世界上第三长的河流呢!长江不仅仅是一条河流,它还是很多鱼类的家园。在长江里,有一种鱼类是我们中国的特有
考虑该任务场景的业务数据是否公开可获取。如果该场景的相关数据可以公开获取,说明模型在训练阶段可能已经接触过类似的语料,因此具有一定的理解能力。这时,通过调整提示词通常可以有效引导模型生成合理的回答。 例如,对于一些常见的问答场景(如常见百科问题),由于这些领域的相关数据广泛存在,模型通常能够较好地理解并生成准
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
虽然传统人工翻译可以提供高质量的结果,但其效率较低且成本高昂。相对而言,机器翻译虽然在速度和成本上具备优势,但在准确性和语境理解上仍存在一定的不足,例如,处理复杂、专业的内容时。 为了解决这些问题,构建一个自动化的多语言翻译工作流显得尤为重要。通过集成翻译工具(如机器翻译API、大型语言模型等),可以在保证翻
支持“零码”和“低码”开发者通过“拖拉拽”的方式快速搭建一个工作流,创建一个应用。 Agent开发平台应用场景 当前,基于Agent开发平台可以构建两种类型的应用,一种是针对文本生成、文本检索的知识型Agent,如搜索问答助手、代码生成助手等,执行主体在大模型;另一种是针对复杂工作流场景的流程型Agent,如金融分析助手、网络检测助手等。
用于选择集合预报的CNOP初始扰动数量。 在CNOP的加噪方式中,会先对初始场进行一定数量的加噪得到一组加噪后的初始场,然后从这组初始场中选择能量变化最大的初始场作为集合预报的初始场,启动推理作业。 ensemble_noise_perlin_scale 用于选择集合预报的Perlin加噪强度。 ensemble_noise_perlin_x
ensemble_noise_method String 集合预报的加噪方式。 ensemble_noise_perlin_scale Double 集合预报的Perlin加噪scale。 ensemble_noise_perlin_octave Long 集合预报的Perlin加噪octave。 ensemble_noise_perlin_x
过拟合或模型过于复杂。 优化器 优化器参数用于更新模型的权重,常见包括adamw。 adamw是一种改进的Adam优化器,增加了权重衰减机制,有效防止过拟合。 模型保存步数 每训练一定数量的步骤(或批次),模型的状态将会被保存。可以通过以下公式预估已训练的数据量: token_num
给输入数据加噪音的尺度 给输入数据加噪音的尺度,定义了给输入数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 给输出数据加噪音的概率 给输出数据加噪音的概率,定义了给输出数据加噪音的概率。加噪音是一种正则化
ave 否 Long 用于选择集合预报的Perlin加噪octave。Perlin噪音的octave指的是噪音的频率,在生成Perlin噪音时,可以将多个不同频率的噪音叠加在一起,以增加噪音的复杂度和细节。每个频率的噪音称为一个octave,而叠加的octave数越多,噪音的复杂度也就越高。
的概率的方差减小,即很多词被选择的可能性增大,利于文本多样化。 多样性与一致性 多样性和一致性是评估LLM生成语言的两个重要方面。 多样性指模型生成的不同输出之间的差异。一致性指相同输入对应的不同输出之间的一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模
给输入数据加噪音的尺度 给输入数据加噪音的尺度,定义了给输入数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。 取值范围:[0,1]。 给输出数据加噪音的概率 给输出数据加噪音的概率,定义了给输出数据加噪音的概率。加噪音是一种正则
表3 盘古NLP大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 导入数据至盘古平台 加工文本类数据集 加工文本类数据集 通过专用的加工算子对数据进行预处理,确保数据符合模型
模型资产介绍 用户在平台中可试用、已订购或训练后发布的模型,将被视为模型资产并存储在空间资产内,方便统一管理与操作。用户可以查看模型的所有历史版本及操作记录,从而追踪模型的演变过程。同时,平台支持一系列便捷操作,包括模型训练、压缩和部署,帮助用户简化模型开发及应用流程。这些功能有助于用户高效管理模型生命周期,提高资产管理效率。
--pkg-path=/home/hilens/pkgs 请注意,该命令只需执行一次,如果已有相关证书,请跳过该步骤。 基于准备工作与步骤1:注册边缘资源池节点,按照以下目录结构存放下载文件,注意修改下载文件的命名。其中,docker下的certs证书会自动生成,一般无需修改。 pkgs // 包目录,用户自行命名
图1 数据集构建流程图 表1 数据集构建流程表 流程 子流程 说明 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 加工数据集 加工数据集 通过专用的加工算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的