检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
值不能小于0(最多支持2位小数,小数点后第3位做四舍五入处理)。 memory Integer 内存,单位为MB,仅支持整数。 cpu Float CPU核数,支持配置小数,输入值不能小于0.01(最多支持2位小数,小数点后第3位做四舍五入处理)。 ascend_a310 Integer
metrics) trainer.save_state() print('Start to evaluate') # 在验证集上做准确性评估 eva_metrics = trainer.evaluate() trainer.log_metrics("eval"
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
metrics) trainer.save_state() print('Start to evaluate') # 在验证集上做准确性评估 eva_metrics = trainer.evaluate() trainer.log_metrics("eval"
减少为0.0003,Loss结果对齐。 需要注意训练引入随机性的目的是为了增加结果的鲁棒性,理论上不会对训练模型的收敛与否造成影响。 此处做随机性固定主要的目的是为了训练结果可完全复现,从而实现NPU和标杆的精度对齐。 父主题: 精度对齐
SMN开关。 subscription_id 否 String SMN消息订阅ID。 exeml_template_id 否 String 自动学习模板ID。 last_modified_at 否 String 最近一次修改的时间。 package 否 WorkflowServicePackege
必填,选择训练代码文件所在的OBS目录。 需要提前将代码上传至OBS桶中,目录内文件总大小要小于或等于5GB,文件数要小于或等于1000个,文件深度要小于或等于32。 训练代码文件会在训练作业启动的时候被系统自动下载到训练容器的“${MA_JOB_DIR}/demo-code”目录中,
场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。 本案例介绍如何在ModelArts Lite场景下使用ranktable路由规划完成Pytorch
生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train.py中修改优化器为apex混合精度模式下的DDP优化方式(修改点:注释第161和167行,增加第168~170行)。
Boolean SMN开关。 subscription_id String SMN消息订阅ID。 exeml_template_id String 自动学习模板ID。 last_modified_at String 最近一次修改的时间。 package WorkflowServicePackege
务的输入参数,即上文提到的输入请求类型。 图1 查看服务的调用指南 调用指南中的输入参数取决于您选择的模型来源: 如果您的元模型来源于自动学习或预置算法,其输入输出参数由ModelArts官方定义,请直接参考“调用指南”中的说明,并在预测页签中输入对应的JSON文本或文件进行服务测试。
用户依然可以查询到资源池。如果需要创建专属资源池,建议等待5min后再创建,且不要使用已创建过的专属资源池名称来命名新建的专属资源池。如果做UI自动化测试,建议用例用随机串替代。 父主题: Standard专属资源池
pipeline应用准备 当前迁移路径是从ONNX模型转换到MindIR模型,再用MindSpore Lite做推理, 所以迁移前需要用户先准备好自己的ONNX pipeline。下文以官方开源的图生图的Stable Diffusion v1.5的onnx pipeline代码为例进行说明。
Diffusion模型性能调优,您可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性地做一些调优操作。 您可以直接使用benchmark命令测试mindir模型性能,用来对比调优前后性能是否有所提升。 # shell cd /home_host/work
模型精度信息,从配置文件读取,可不填。非模板参数 source_type 否 String 模型来源的类型,当前仅可取值“auto”,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业和其他方式部署的模型不设置此值。默认值为空。非模板参数 dependencies 否
ModelArts.5306 The maximum depth of files has been exceeded 文件最大深度超过最大值 请选择其他源数据或减少数据深度。 400 ModelArts.5309 Only allow edge service published to AIHub