检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。
是文本分类、情感分析、机器翻译,还是问答系统,模型都能以高准确率完成任务,为用户提供高质量的输出结果。 这种卓越的表现源于其先进的算法和深度学习架构。盘古大模型能够深入理解语言的内在逻辑与语义关系,因此在处理复杂语言任务时展现出更高的精准度和效率。这不仅提高了任务的成功率,也大幅
导致不稳定的学习过程。 热身阶段学习率 热身轮次中使用的初始学习率。 优化器 优化器参数用于更新模型的权重。 sgd(随机梯度下降法)是深度学习中常用的优化算法之一,尤其适用于大规模数据集的训练。 权重衰减 用于防止模型过拟合。在更新模型权重时,它会对模型参数施加惩罚,使得权重值趋于较小,从而提高模型的泛化性能。
科学计算大模型训练流程与选择建议 科学计算大模型训练流程介绍 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率
训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。
ss=高空Loss+surface_loss_weight*表面Loss。取值范围:(0.05, 10)。 模型结构参数 深度 用于定义深度学习网络的层数。数值越大,模型复杂性越高。模型参数量会增加。然而,这也会导致模型的结果文件变大,可能会占用大量的显存。在设置深度时,需要权衡
Peilin噪音通过对输入数据(比如空间坐标)进行随机扰动,让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。
ery改写模块、中控模块、检索模块和问答模块组成: query改写模块:针对多轮对话中经常出现的指代和信息省略问题,对用户输入的query做改写,将指示代词替换为实体词,并补充省略的context信息。基于改写后的query,再去调用中控模块以及检索模块,以便能够更好地检索出相关文档。