检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
附录:微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
资源购买 购买弹性文件服务SFS 弹性文件服务默认为按需计费,即按购买的存储容量和时长收费。您也可以购买包年包月套餐,提前规划资源的使用额度和时长。在欠费时,您需要及时(15天之内)续费以避免您的文件系统资源被清空。SFS购买指导请参考如何购买弹性文件服务?。 购买容器镜像服务SWR
不同机型的对应的软件配套版本 由于弹性集群资源池可选择弹性裸金属或弹性云服务器作为节点资源,不同机型的节点对应的操作系统、适用的CCE集群版本等不相同,为了便于您制作镜像、升级软件等操作,本文对不同机型对应的软件配套版本做了详细介绍。 裸金属服务器的对应的软件配套版本 表1 裸金属服务器
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。
SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
查询模型对象列表 示例代码 在ModelArts Notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景1:查询当前用户所有模型对象 1 2 3 4 5 6 from modelarts.session import
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。多模态只支持hf上下载的awq权重,可跳过步骤一。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16
Step2 为用户配置云服务使用权限 主用户为子账号授予ModelArts、OBS等云服务的使用权限后,子账号才可以使用这些云服务。此步骤介绍如何为用户组中的所有子账号授予使用ModelArts、OBS、SWR等各类云服务的权限。 主用户在IAM服务的用户组列表页面,单击“授权”,进入到授权页面,为子账号配置权限。
ModelArts最佳实践案例列表 在最佳实践文档中,提供了针对多种场景、多种AI引擎的ModelArts案例,方便您通过如下案例快速了解使用ModelArts完成AI开发的流程和操作。 DeepSeek模型推理场景 表1 样例 场景 说明 DeepSeek模型基于ModelArts
设置断点续训练 什么是断点续训练 断点续训练是指因为某些原因(例如容错重启、资源抢占、作业卡死等)导致训练作业还未完成就被中断,下一次训练可以在上一次的训练基础上继续进行。这种方式对于需要长时间训练的模型而言比较友好。 断点续训练是通过checkpoint机制实现。 checkp
创建AI应用 功能介绍 导入元模型创建AI应用。 执行代码、模型需先上传至OBS(训练作业生成的模型已默认存储到OBS)。 接口约束 使用模板导入模型与不使用模板导入这两类导入方式的Body参数要求不一样。以下Body参数说明中以模板参数表示适合使用模板导入模型时填写的参数,非模
将AI Gallery中的模型部署为AI应用 AI Gallery支持将模型部署为AI应用,在线共享给其他用户使用。 前提条件 选择的模型必须是支持部署为AI应用的模型,否则模型详情页没有“部署 > AI应用”选项。 部署AI应用 登录AI Gallery。 单击“模型”进入模型列表。
使用前必读 在调用ModelArts API之前,请确保已经充分了解ModelArts相关概念,详细信息请参见产品介绍。 ModelArts提供了REST(Representational State Transfer)风格API,支持您通过HTTPS请求调用,调用方法请参见如何调用API。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
msprobe API预检 msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精