检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题答案”,“生成”一词不是很恰当,模型会引入一些外部知识。 例如,在构造泛化问题的任务中,需要基
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
在左侧导航栏中选择“数据工程 > 数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情
您也可以鼠标单击已有应用右上角的,进行应用的复制、删除、复制ID操作。 在“创建应用”窗口中,填写应用名称与应用描述,单击左下角的图片可更换应用图标,单击“确定”,进入应用详情页面。 图1 填写应用名称与应用描述 图2 创建应用 配置Prompt builder,详见配置Prompt builder。 配置插件,详见配置插件。
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来
> 知识”,单击“添加”。 在“添加知识”窗口,单击“点此上传”,上传知识文件。 图1 添加知识 上传完成后,单击“确定”。 在“高级配置”中,可查看上传成功的知识文件。 图2 知识上传成功 父主题: 手工编排Agent应用
有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方
上线加工后的视频类数据集 加工后的视频类数据集需要执行上线操作,用于后续的数据标注、评估、发布任务,具体步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据加工”,在数据集操作列单击“上线”,执行上线操作。
平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建NLP大模型部署任务。 NLP大模型支持文本对话能力,在输入框中输入问题,模型就会返回对应的答案内容。 图1 调测NLP大模型 表1 NLP大模型能力调测参数说明 参数 说明 温度 用于控制生成文本的多样
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
通过语种识别模型得到文档的语言类型,筛选所需语种的文档。 段落结尾不完整句子过滤 删除文本中不完整段落和句子。 广告数据过滤 删除文本中包含广告数据的句子。 全局文本去重 检测并去除数据中重复或高度相似的文本,防止模型过拟合或泛化性降低。 父主题: 数据集加工算子介绍
in加噪和CNOP加噪两种方式。 Peilin噪音通过对输入数据(比如空间坐标)进行随机扰动,让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些
添加,最后单击“确定”。若想创建插件可单击右上角“创建插件”,创建插件的步骤请参见创建插件。 图2 添加插件 添加插件后,可在“高级配置”中查看当前已添加的插件。 创建插件 创建插件的步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选
rain01.csv;验证数据名称需包含eval字眼;测试数据名称需包含test字眼。文件的命名不能同时包含train、eval和test中的两个或三个。 时序预测必须要包含一个时间列,时间列值的格式示例为 2024-05-27 或 2024/05/27 或 2024-05-27
为什么微调后的盘古大模型的回答中会出现乱码 为什么微调后的盘古大模型的回答会异常中断 为什么微调后的盘古大模型只能回答训练样本中的问题 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 为什么多轮问答场景的盘古大模型微调效果不好
图片类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台提供了图文类、图片类加工算子,算子能力清单见表1、表2。 图文类加工算子能力清单 表1
化对话问答功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 操作流程 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“能力调测”,进
获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的请求URI。 图1 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“预置服务”页签,
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型(NLP大模型、科学计算大模型)在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。
性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意营销等多个典型场景中,提供强大的AI技术支持。 ModelArts Studio大模型开发平台为用户提供了多种规格的NLP大模型,以满足不同场景和需求。不同模型