检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
9 \ --trust-remote-code 多模态推理服务启动模板参数说明如下: VLLM_IMAGE_FETCH_TIMEOUT:图片下载时间环境变量。 VLLM_ENGINE_ITERATION_TIMEOUT_S:服务间隔最大时长,超过会报timeout错误。 PYT
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_samples 否 Boolean 是否导入样本。可选值如下: true:导入样本(默认值)
Private key file:存放在本地的云上开发环境私钥文件,即在创建开发环境实例时创建并保存的密钥对文件。 单击将连接重命名,可以自定义一个便于识别的名字,单击OK。 配置完成后,单击Test Connection测试连通性。 选择Yes,显示Successfully connected表示网络可以连通,单击OK。
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
单条音频时长应大于1s,大小不能超过4MB。 适当增加训练数据,会提升模型的精度。声音分类建议每类音频至少20条,每类音频总时长至少5分钟。 建议训练数据和真实识别场景的声音保持一致并且每类的音频尽量覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。
too large. 图片大小超限 请上传小于7M的图片。 400 ModelArts.5062 The number of the images uploaded today has reached the limit. 当日上传图片数量超限 请次日再上传图片。 400 ModelArts
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
自动迁移工具使用指导 训练业务代码适配昇腾PyTorch代码适配 PyTorch Analyse 迁移分析工具,可以使用工具扫描用户的训练脚本,识别出源码中不支持的torch API和cuda API信息。 包含在cann toolkit中。 分析工具使用指导 精度调优 msprobe
在模型广场查看模型 在模型广场页面,ModelArts Studio大模型即服务平台提供了丰富的开源大模型,在模型详情页可以查看模型的详细介绍,根据这些信息选择合适的模型进行训练、推理,接入到企业解决方案中。 访问模型广场 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
ModelArts服务提供了业务异常行为感知能力。例如运营平台异常数据感知,安全日志集成等。 ModelArts服务具备遭受攻击时的风险控制和应急响应能力。例如快速识别恶意租户,恶意IP。 ModelArts服务具备攻击流量停止后,快速恢复业务的能力。 云服务域名使用安全及租户内容安全策略 ModelAr
shell python mslite_pipeline.py 图2 执行推理脚本 图3 MindSpore Lite pipeline输出的结果图片 父主题: 应用迁移
常量折叠是编译器优化中的通用技术之一,在编译节点简化常量表达。通过多数的现代编译器不会真的产生两个乘法的指令再将结果存储下来,取而代之的是会识别出语句的结构,并在编译时期将数值计算出来而不是运行时去计算(在本例子,结果为2,048,000)。 i = 320 * 200 * 32;
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
l_limit的值一致。 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
# prints: [[1., 0., 0.]] 运行推理脚本。 python inference.py 由于./docs/CLIP.png图片是一张图表,因此结果值和第一个文本"a diagram"吻合,结果值会接近[[1., 0., 0.]]。 Step8 精度评估 关闭数据集shuffle,保证训练数据一致。
data_sources 是 Array of DataSource objects 数据集输入位置,用于将此目录及子目录下的源数据(如图片/文件/音频等)同步到数据集。对于表格数据集,该参数为导入目录。表格数据集的工作目录不支持为KMS加密桶下的OBS路径。目前仅支持传入单个DataSource。
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String