检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
userdata机制拉取cce-agent,但是在服务器上查看没有拉cce-agent的动作,理论上该动作是cloudinit中的脚本在创建时自动执行的,可能是由于安装脚本没有注入userdata或者注入了但未执行。 经查看是由于userdata未执行,可能原因为服务器A制作镜像时没有清理残留目录导致,即:
outputs 数据集标注节点的输出列表 是 LabelingOutput或者LabelingOutput的列表 properties 数据集标注相关的配置信息 是 LabelTaskProperties title title信息,主要用于前端的名称展示 否 str description 数据集标注节点的描述信息
用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 duration 否 Long 续订时长,推荐该参数在leaseReq中配置,若请求参数中包含duration,则忽略leaseReq的值,且实例自动停止类别为定时停止。(单位:毫秒)。 请求参数 表3 请求Body参数
algorithm_names Array of strings 该算法类型下所有算法的名称。 请求示例 查询自动化搜索作业支持的yaml配置模板的信息 GET https://endpoint/v2/{project_id}/training-jobs/autosearch/yaml-templates
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: OBS操作相关故障
单击“发布”弹出“选择云服务区域”,选择区域后单击“确定”进入发布数据集页面,填写相关信息。 如果选择ModelArts已有的数据集发布,则参见表1配置数据集信息。 图1 发布数据集(ModelArts) 表1 参数说明(ModelArts) 参数 说明 资产标题 在AI Gallery显示的资产名称,建议按照您的目的设置。
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
原因:训练作业使用的镜像CUDA版本只支持sm_37、sm_50、sm_60和sm_70的加速卡,不支持sm_80。 处理建议:使用自定义镜像创建训练作业,并安装高版本的cuda以及对应的PyTorch版本。 查看训练作业的“日志”,出现报错“ERROR:root:label_map.pbtxt cannot
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
建议根据业务情况及使用习惯,选择OBS使用方法。 如果您的数据量较小(小于100MB)或数据文件少(少于100个),建议您使用控制台上传数据。控制台上传无需工具下载或多余配置,在少量数据上传时,更加便捷高效。 如果您的数据量较大或数据文件较多,建议选择OBS Browser+或obsutil工具上传。OBS B
方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home/ma-user/ws/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二
方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home/ma-user/ws/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二
在详情页面单击“下载”。弹出“选择云服务区域”,选择区域后单击“确定”进入下载详情页面。根据数据集下载至OBS还是ModelArts数据集列表,填写不同配置信息: ModelArts数据管理模块在重构升级中,对未使用过数据管理的用户不可见。建议新用户选择将数据集下载至OBS使用。 将数据集下载至OBS
data_sources 是 Array of DataSource objects 数据集输入位置,用于将此目录及子目录下的源数据(如图片/文件/音频等)同步到数据集。对于表格数据集,该参数为导入目录。表格数据集的工作目录不支持为KMS加密桶下的OBS路径。目前仅支持传入单个DataSource。 dataset_name
是否有精度问题。预检工具使用包含以下三步:dump、run_ut以及api_precision_compare。基本步骤如下: 通过pip安装Msprobe工具。 # shell pip install mindstudio-probe 获取NPU和GPU的dump数据。 PyT
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers