检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
列表。 在资源池列表中,选择需要进行驱动升级的资源池“ > 驱动升级”。 图1 驱动升级 在“驱动升级”弹窗中,会显示当前专属资源池的驱动类型、实例数、当前版本、目标版本、升级方式、升级范围和开启滚动开关。 目标版本:在目标版本下拉框中,选择一个目标驱动版本。 升级方式:可选择安全升级或强制升级。
训练效率和性能 stage sft 表示训练类型。可选择值:[pt、sf、rm、ppo],pt代表预训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练。 finetuning_type full 用于指定微调的类型,可选择值【full、lora】如果设置为"
多少token,必须大于或等于--max-model-len,推荐使用4096或8192。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。 --tensor-parallel-size:模型并行数
# 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚
rmance_cfgs.yaml相对或绝对路径。 <model_name>:训练模型名,如qwen2-7b <run_type>:训练策略类型及数据序列长度:【lora:4096-lora、full:4096-full、lora-8k:8192-lora、full-8k:8192-full】
requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 执行性能测试脚本前,需先安装相关依赖。 conda activate python-3.9.10 pip install -r requirements.txt 静态benchmark
requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 执行性能测试脚本前,需先安装相关依赖。 conda activate python-3.9.10 pip install -r requirements.txt 静态benchmark
shape和input type。 --profile-memory:记录内存使用。 --profiler-level:日志记录层次。字符串类型,三个有效值 "level0"、"level1"、"level2",默认为level1。 "level0: Collects upper-layer
Qwen-14B/qwen.tiktoken \ --add-qkv-bias 参数说明: --model-type:模型类型。 --loader:权重转换要加载检查点的模型名称。 --tensor-model-parallel-size:张量并行数,需要与训练脚本中的配置一样。
--output-tokens 128 256 --benchmark-csv benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等。上面命令中使用vllm举例。 --host ${docker_ip}:服务部署
--output-tokens 128 256 --benchmark-csv benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host ${docker_ip}:服务
--output-tokens 128 256 --benchmark-csv benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${d
--output_path ${output_path} 参数说明: model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utili
--output_path ${output_path} 参数说明: model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utili
如下所示,表示下载文件“config.json”和“merges.txt”到服务器的缓存目录“/test”下,当回显“100%”时表示下载完成。 gallery-cli download ur5468675/test_cli_model1 config.json merges.txt Download 1/2 config
重文件,如qwen2.5-7b-lora日志: full-qwen2.5-7b-4096-313T-20250113_173136-0.txt 执行下游评估 为增加精度评测的稳定性及进一步确保训练,执行过程如下: 获取到训练权重后使用ascendfactory-cli、eval接
--output_path ${output_path} 参数说明: model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utili
异,本指南提供了算子问题定位工具集详细的使用场景和使用步骤,方便用户自行或在支持下排查可能的数值计算精度问题。 当用户将大语言模型或者其他类型深度神经网络的训练从GPU迁移到昇腾AI处理器时,可能出现以下不同现象的模型精度问题。一般包括: Loss曲线与CPU/GPU差异不符合预期。
requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 执行性能测试脚本前,需先安装相关依赖。 conda activate python-3.9.10 pip install -r requirements.txt 静态benchmark
获取一个OBS文件的大小: import moxing as mox mox.file.get_size('obs://bucket_name/obs_file.txt') 父主题: MoXing