检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方式一:在Notebook实例创建页面,镜像类型选择“自定义镜像”,名称选择上述保存的镜像。 图3 创建基于自定义镜像的Notebook实例 方式二:在“镜像管理”页面,单击某个镜像的镜像详情,在镜像详情页,单击“创建Notebook”,也会跳转到基于该自定义镜像创建Notebook的页面。 镜像保存时,哪些目录的数据可以被保存
因运行时间到期停止,将导致镜像保存失败。 镜像保存成功后,实例状态变为“运行中”,用户可在“镜像管理”页面查看到该镜像详情。 单击镜像的名称,进入镜像详情页,可以查看镜像版本/ID,状态,资源类型,镜像大小,SWR地址等。 Step4 使用保存成功的镜像用于推理部署 将Step2
使用预置镜像制作自定义镜像用于训练模型 使用预置框架构建自定义镜像原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面
境以容器镜像的方式保存下来。具体案例参考在Notebook中通过镜像保存功能制作自定义镜像。 Notebook自定义镜像规范 制作自定义镜像时,Base镜像需满足如下规范: 基于昇腾、Dockerhub官网等官方开源的镜像制作,开源镜像需要满足如下操作系统约束: x86:Ubuntu18
图2 模型的自定义镜像制作场景二 场景三:预置镜像既不满足软件环境要求,同时需要放入模型包,新的镜像超过35G,在服务器(如ECS)上制作。具体案例参考在ECS中通过Dockerfile从0制作自定义镜像用于推理。 图3 模型的自定义镜像制作场景三 约束限制 自定义镜像中不能包含恶意代码。
swr_path String SWR镜像地址。 tag String 镜像Tag。 type String 镜像类型。枚举值如下: BUILD_IN:系统内置镜像。 DEDICATED:用户保存的镜像。 update_at Long 镜像最后更新的时间,UTC毫秒。 visibility
Step1 在Notebook中构建一个新镜像:在ModelArts的开发环境Notebook中制作自定义镜像,镜像规范可参考创建模型的自定义镜像规范。 Step2 构建成功的镜像注册到镜像管理模块:将构建成功的自定义镜像注册到ModelArts的镜像管理模块中,方便下一步调试。 Step3
1”为构建的新镜像的SWR路径。“XXX”为鉴权时指定的profile。 注册新镜像 构建完成后,将新镜像注册到ModelArts镜像管理服务中,进而能够在ModelArts中使用该镜像。 有两种方式来注册镜像。 方式一:使用ma-cli image register命令来注册镜像。注册
创建训练作业的创建方式(使用自定义镜像) 参数名称 说明 创建方式 必选,选择“自定义算法”。 启动方式 必选,选择“自定义”。 镜像 必填,单击右边的“选择”,从容器镜像中选择上一步上传到SWR的镜像。 代码目录 选择训练代码文件所在的OBS目录。如果自定义镜像中不含训练代码则需要配
1:8080/goodbye 如果验证自定义镜像功能成功,结果如下图所示。 图3 校验接口 上传自定义镜像至SWR服务。 完成自定义镜像上传后,您可以在“容器镜像服务>我的镜像>自有镜像”列表中看到已上传镜像。 将自定义镜像创建为模型 参考从容器镜像中选择元模型导入元模型,您需要特别关注以下参数:
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
ModelArts预置镜像更新说明 本章节提供了ModelArts预置镜像的变更说明 ,比如依赖包的变化,方便用户感知镜像能力的差异,减少镜像使用问题。 统一镜像更新说明 表1 统一镜像更新说明 镜像名称 更新时间 更新说明 mindspore_2.3.0-cann_8.0.rc1-py_3
选择“镜像管理”,进入镜像管理页面。 单击“注册镜像”,镜像源即为步骤1中推送到SWR中的镜像。请将完整的SWR地址复制到这里即可,或单击可直接从SWR选择自有镜像进行注册。 “架构”和“类型”根据实际情况选择,与镜像源保持一致。 注册镜像时,“架构”和“类型”需要和镜像源保持一
Notebook基础镜像x86 自定义专用镜像 自定义镜像包含两种镜像:conda3-cuda10.2-cudnn7-ubuntu18.04,conda3-ubuntu18.04,该类镜像是无AI引擎以及相关的软件包,镜像较小,只有2~5G。用户使用此类镜像做基础镜像,安装自己需要的
打印如下信息,表示上传镜像成功。 图7 成功上传镜像 Step8 注册镜像 镜像上传至SWR成功后,在ModelArts控制台的“镜像管理”页面中单击“注册镜像”。 图8 在ModelArts控制台注册镜像 在镜像源中,选择上一步中上传到SWR自有镜像仓中的镜像名,作为模型推理使用的镜像,架构选
打印如下信息,表示上传镜像成功。 图7 成功上传镜像 Step8 注册镜像 镜像上传至SWR成功后,在ModelArts控制台的“镜像管理”页面中单击“注册镜像”。 图8 在ModelArts控制台注册镜像 在镜像源中,选择上一步中上传到SWR自有镜像仓中的镜像名,作为模型推理使用的镜像,架构选
U) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend) 训练框架的自定义镜像约束 推荐自定义镜像使用ubuntu-18.04的操作系统,避免出现版本不兼容的问题。 自定义镜像的大小推荐15G
ModelArts统一镜像列表 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch。适用于开发环境,模型训练,服务部署,请参考统一镜像列表。 表1 MindSpore 预置镜像 适配芯片 适用范围 mindspore_2
ux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 Step4 制作自定义镜像 目标:构建安装好如下软件的容器镜像,并使用ModelArts训练服务运行。 ubuntu-18.04 cuda-11.1 python-3
0-cann7.0.0 完成镜像上传后,在容器镜像服务控制台的“我的镜像”页面可查看已上传的自定义镜像。 “swr.cn-north-4.myhuaweicloud.com/deep-learning/pytorch:2.1.0-cann7.0.0”即为此自定义镜像的“SWR_URL”。