检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可根据界面提示调用接口访问在线服务。 表1 预测结果中的参数说明 参数 说明 predicted_label 该段文本的预测类别。 score 预测为此类别的置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在版本管理区域,单击“停止”,即可停止在线
output-prefix:处理后的数据集保存路径+数据集名称前缀(例如:alpaca_ft)。 - tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase', 'BertWordPieceCase','GPT2BPETokenizer',
贵阳一区域:最新的版本因为支持新驱动,目前仅支持使用专属资源池(Snt9b2)。 乌兰一区域:支持使用公共资源池(Snt9b3)。 如果支持公共资源池,但是没开白名单,“资源池类型”选择“公共资源池”时,下方会出现提示:公共资源池暂未完全公开,如需申请使用,请联系与您对接的销售人员或拨打4000-955-988获得支持,您也可以在线提交售前咨询。
--help Show this message and exit. 表1 鉴权命令参数说明 参数名 参数类型 是否必选 参数说明 -auth / --auth String 否 鉴权方式,支持PWD(用户名密码)、AKSK(access key和secret
文数 个 ≥0 NA NA NA ROCE接收的CNP类型报文数 ma_node_npu_roce_rx_cnp_packets_total ROCE接收的CNP类型报文数 个 ≥0 NA NA NA ROCE发送的CNP类型报文数 ma_node_npu_roce_tx_cnp_packets_total
Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与
Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与
如数据评估、模型评估、性能评估等,让AI项目管理者能很方便的查看流水线执行过程的质量与效率。 流程优化:围绕流水线每一次迭代,用户可以自定义输出相关的核心指标,并获取相应的问题数据与原因等,从而基于这些指标,快速决定下一轮迭代的执行优化。 Workflow介绍 Workflow
能开启,可单击“归档数据直读”选项进行修改。 图2 关闭归档数据直读功能 ModelArts.4711 数据集标注样本数满足算法要求 每个类别至少包含5张以上图片。 ModelArts.4342 标注信息不满足切分条件 出现此故障时,建议根据如下建议,修改标注数据后重试。 多标签
加载上一步预训练后保存的权重文件。 TRAIN_ITERS 300 训练周期,必须大于上次保存训练的周期次数。 RUN_TYPE retrain 必填。训练脚本类型,retrain表示断点续训练。 断点续训练操作过程 baichuan2-13b的断点续训脚本baichuan2.sh,存放在“6.3.9
请根据实际规划修改。 TRAIN_ITERS 300 必填。表示训练周期,必须大于上次保存训练的周期次数。 RUN_TYPE retrain 必填。训练脚本类型,retrain表示断点续训练。 在AscendSpeed代码目录下执行断点续训练脚本。 单机启动 MODEL_TYPE=6B RUN_TYPE=retrain
在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练阶段类型。 指令监督微调,复制tune_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练,复制dpo_yaml样例模板内容覆盖demo
在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练阶段类型。 指令监督微调,复制tune_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练,复制dpo_yaml样例模板内容覆盖demo
outdir:生成的训练data 地址 end_num:生成的data总条数 used_npus:使用哪些NPU model_type:使用模型类型 目前支持 qwen2 llama1 llama2 及 llama3,其中llama1、2及chat都填写llama model_name:模型地址
outdir:生成的训练data 地址 end_num:生成的data总条数 used_npus:使用哪些NPU model_type:使用模型类型 目前支持 qwen2 llama1 llama2 及 llama3,其中llama1、2及chat都填写llama model_name:模型地址
output-prefix:处理后的数据集保存路径+数据集名称前缀(例如:alpaca_ft)。 - tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase', 'BertWordPieceCase','GPT2BPETokenizer',
请根据实际规划修改。 TRAIN_ITERS 300 必填。表示训练周期,必须大于上次保存训练的周期次数。 RUN_TYPE retrain 必填。训练脚本类型,retrain表示断点续训练。 在AscendSpeed代码目录下执行断点续训练脚本。 单机启动 MODEL_TYPE=14B RUN_TYPE=retrain
根据“flavor_id”字段选择并记录创建训练作业时需要的规格类型,本章以“modelarts.vm.cpu.8u”为例,并记录“max_num”字段的值为“16”。 调用获取训练作业支持的AI预置框架接口查看训练作业的引擎类型和版本。 请求消息体: URI格式:GET https:/
数据集。 准备一个图像分类算法(或者可以直接从AI Gallery搜索订阅一个“图像分类-ResNet_v1_50”算法)。 准备一个图片类型的数据集,请参考准备数据集。可从AI Gallery直接下载(例如:8类常见生活垃圾图片数据集)。 from modelarts import
osmoothquant/utils/utils.py中的build_model_and_tokenizer函数,将torch_dtype类型从torch.float16改成torch.bfloat16 kwargs = {"torch_dtype": torch.bfloat16