检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-13b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
云监控服务”,进入“云监控服务”管理控制台。 在左侧导航栏,选择“告警 > 告警规则”页面,单击“创建告警规则”。 在“创建告警规则”页面,“资源类型”选择“ModelArts”,“维度”选择“服务”,“触发规则”选择“自定义创建”,设置告警策略,完成其他信息填写后,单击“立即创建”。 方式二:对单个服务设置告警规则
"$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-70b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
"$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-13b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
model_path: mindir文件路径 model_name: 模型名称 device_type: 设备类型 use_ascend: 是否使用Ascend onnx_runtime_model: onnx模型对象
28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.3版本。 支持FP16和BF16数据类型推理。 Lite k8s Cluster驱动版本推荐为23.0.6。 适配的CANN版本是cann_8.0.rc3。 资源规格要求 本文档中的模型运行环境是ModelArts
表示执行脚本时的路径。 MODEL_NAME llama2-70b 对应模型名称。请根据实际修改。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
展示当前服务使用过程中的关键操作,比如服务部署进度、部署异常的详细原因、服务被启动、停止、更新的时间点等。 事件保存周期为1个月,1个月后自动清理数据。 查看服务的事件类型和事件信息,请参见查看在线服务的事件 日志 展示当前服务下每个模型的日志信息。包含最近5分钟、最近30分钟、最近1小时和自定义时间段。 自
如果对于误检有疑问或者卡死问题无法自行解决,您可以前往ModelArts开发者论坛进行提问或者搜索问题。 约束限制 卡死检测仅支持资源类型为GPU和NPU的训练作业。 操作步骤 卡死检测无需额外配置,作业运行中会自动执行检测。检测到作业卡死后会在训练作业详情页提示作业疑似卡死
sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。 finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。
表示执行脚本时的路径。 MODEL_NAME llama2-70b 对应模型名称。请根据实际修改。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
"$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-70b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
"$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-13b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。 finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。
sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。 finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。
'__main__': main() 结果对比 分别以单机单卡和两节点16卡两种资源类型完成100epoch的cifar-10数据集训练,训练时长和测试集准确率如下。 表1 训练结果对比 资源类型 单机单卡 两节点16卡 耗时 60分钟 20分钟 准确率 80+ 80+ 分布式训练完整代码示例
以通过“自定义策略”来进行精细控制。 表1列出了ModelArts的所有预置系统策略。 表1 ModelArts系统策略 策略名称 描述 类型 ModelArts FullAccess ModelArts管理员用户,拥有所有ModelArts服务的权限 系统策略 ModelArts
以通过“自定义策略”来进行精细控制。 表1列出了ModelArts的所有预置系统策略。 表1 ModelArts系统策略 策略名称 描述 类型 ModelArts FullAccess ModelArts管理员用户,拥有所有ModelArts服务的权限 系统策略 ModelArts
reTrainedModel。 该类可用于执行AI Gallery工具链服务,此处以文本问答(Question Answering)的任务类型为例: class NewBertForQuestionAnswering(NewBertPreTrainedModel): def
情况及其处理建议请参见权重校验。 当关闭权重校验时,则不进行校验,创建模型可能会因为权重文件不合规而失败。 表2 模型介绍 模型系列 模型类型 应用场景 支持语言 GLM-4 文本生成 对话问答、长文本推理、代码生成 中文、英文 ChatGLM3 文本生成 对话问答、数学推理、代码生成