检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo.yaml。修改详细步骤如下所示。 选择训练策略类型。 sft,复制sft_yaml样例模板内容覆盖demo.yaml文件内容。 lora,复制lora_yaml样例模板内容覆盖demo.yaml文件内容。
Face权重时,对应的存放地址。请根据实际规划修改。 MODEL_NAME llama2-13b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
Face权重时,对应的存放地址。请根据实际规划修改。 MODEL_NAME llama2-70b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
令监督微调,rm代表奖励模型训练,ppo代表PPO训练,dpo代表DPO训练。 finetuning_type full 用于指定微调策略类型,可选择值【full、lora】如果设置为"full",则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。
"$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-13b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
"$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-70b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
--datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat), 默认为chat, 依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/ho
--datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat),默认为chat,依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/home
--datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat), 默认为chat, 依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/ho
该对象是InputStorage和OutputStorage的基类,包含了两者的所有能力,可以供用户灵活使用。 属性 描述 是否必填 数据类型 name 名称。 是 str title 不填默认使用name的值。 否 str description 描述信息。 否 str create_dir
PlaceholderType.ENUM, default="NCHW", enum_list=["NCHW", "NHWC"], description="输入数据类型,NHWC表示channel在最后,NCHW表channel在最前,默认值NCHW(速度有提升)")), wf.A
"$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-70b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
"$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-13b 对应模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
表示执行脚本时的路径。 MODEL_NAME llama2-70b 对应模型名称。请根据实际修改。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
--datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat),默认为chat,依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/home
--datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat), 默认为chat, 依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/ho
28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 支持FP16和BF16数据类型推理。 Lite k8s Cluster驱动版本推荐为23.0.6。 适配的CANN版本是cann_8.0.rc3。 资源规格要求 本文档中的模型运行环境是ModelArts
表示执行脚本时的路径。 MODEL_NAME llama2-70b 对应模型名称。请根据实际修改。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE [GeneralPretrainHandler, Gener
Notebook cache目录大小 ma_container_notebook_cache_dir_size_bytes GPU和NPU类型的Notebook会在“/cache”目录上挂载一块高速本地磁盘,该指标描述该目录的总大小。 字节(Bytes) ≥0 NA NA NA Notebook
云监控服务”,进入“云监控服务”管理控制台。 在左侧导航栏,选择“告警 > 告警规则”页面,单击“创建告警规则”。 在“创建告警规则”页面,“资源类型”选择“ModelArts”,“维度”选择“服务”,“触发规则”选择“自定义创建”,设置告警策略,完成其他信息填写后,单击“立即创建”。 方式二:对单个服务设置告警规则