检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
th"可以是本地的图片或网络地址。 对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内. 检测框对应的文本描述也可以通过<ref>text_caption</ref>表示。
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 图1 创建数据处理基本信息 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。 设置数据处理类型为“数据清洗”,填写相应算子的设置参数,算子的详细参数参见数据校验算子说明(MetaValidation算子)。 图2
即切换使用新域名。为保障持续提供推理服务,请您及时更新业务中的预测API的域名。 如果您使用的是VPC内部节点访问ModelArts推理的在线服务,预测API切换域名后,由于内网VPC无法识别公网域名,请提交工单联系华为云技术支持打通网络。 父主题: 产品变更公告
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape 否 String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape 否 String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
使得单机精度达标,然后再恢复层数拉起多机训练。 若单机精度正常但多机精度异常,有可能是多机通信造成的精度问题,此时可以用精度工具的通信精度检测功能进行定位。部分集合通信算子要求通信域内各rank结果一致,如AllReduce、AllGather等,利用这一特性,工具将多机模型训练
print(outputs[0].outputs[0].text) MODEL_NAME表示对应模型路径。 在线推理使用Guided Decoding 启动推理服务请参考启动推理服务章节。 在线推理使用Guided Decoding时,在发送的请求中包含上述guided_json架构,具体示例可参考以下代码。
ID号。 如果cuda相关运算设置的卡ID号在所选规格范围内,但是依旧出现了上述报错。可能是该资源节点中存在GPU卡损坏的情况,导致实际能检测到的卡少于所选规格。 处理方法 建议直接根据系统分卡情况下传进去的CUDA_VISIBLE_DEVICES去设置,不用手动指定默认的。 如
”和“@”开头的命令时,为了安全考虑,ModelArts会自动加上Tab键,并对双引号进行转义处理。 “数据切分” 仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 默认不启用。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只
更新管理 ModelArts在线服务更新 对于已部署的推理服务,ModelArts支持通过更换模型的版本号,实现服务升级。 推理服务有三种升级模式:全量升级、滚动升级(扩实例)和滚动升级(缩实例)。了解三种升级模式的流程,请参见图1。 全量升级 需要额外的双倍的资源,先全量创建新版本实例,然后再下线旧版本实例。
精度问题诊断 逐个替换模型,检测有问题的模型 该方式主要是通过模型替换,先定位出具体哪个模型引入的误差,进一步诊断具体的模型中哪个算子或者操作导致效果问题,模型替换原理如下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。
PyTorch、TensorFlow和MindSpore等引擎的AI模型。 支持通过JupyterLab工具在线打开Notebook,具体请参见通过JupyterLab在线使用Notebook实例进行AI开发。 支持本地IDE的方式开发模型,通过开启SSH连接,用户本地IDE可以
主要在服务部署节点的输出中使用 如果您没有特殊需求,可直接使用内置的默认值。 使用案例 主要包含三种场景的用例: 新增在线服务 更新在线服务 服务部署输出推理地址 新增在线服务 import modelarts.workflow as wf # 通过ServiceStep来定义一个服务部署节点,输入指定的模型进行服务部署
像无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 说明: 建议写清楚模型的使用方法,方便使用者更好的完成训练、推理任务。 表2 任务类型支持的AI Gallery工具链服务 任务类型 微调大师 在线推理服务 AI应用 文本问答/文本生成 支持 支持 支持 其他类型
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
ull表示不根据值搜索,否则搜索的值满足列表中任意一个即可。 type 否 Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
infer_type 是 String 推理方式,取值为real-time/batch/edge。 real-time代表在线服务,将模型部署为一个Web Service,并且提供在线的测试UI与监控能力,服务一直保持运行。 batch为批量服务,批量服务可对批量数据进行推理,完成数据处理后自动停止。