检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
识别训练代码中是否有“/home/work”的硬编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。 如果您需要使用旧版训练引擎,单击显示旧版引擎即可选择旧版引擎。新旧版支持的预置引擎差异请参考表1。详细的训练引擎版本说明请参考新版训练和旧版训练分别支持的AI引擎。
kers 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer 指定每一页返回的最大条目数,取值范围[1,100],默认为10。
查询镜像组列表 GET /v1/{project_id}/images/group modelarts:image:listGroup - √ √ 注册自定义镜像 POST /v1/{project_id}/images modelarts:image:register - √ √ 删除自定义镜像
说明。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。 前提条件 已完成模型开发和训练,使用的AI引擎为ModelArts支持的类型和版本,详细请参见推理支持的AI引擎。 已完成训练的模型包,及其对应的推理代码和配置文件,且已上传至OBS目录中。 确
kers 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workforce_id 是 String 标注团队ID。 表2 Query参数 参数 是否必选 参数类型 描述 limit 否 Integer
根据业务需求和数据集类型选择合适的许可证类型。 单击许可证类型后面的感叹号可以查看许可证详情。 说明: 部分许可证网站说明地址是海外网站,用户可能会因网络限制无法访问。 谁可以看 设置此数据集的公开权限。可选值有: “公开”:表示所有使用AI Gallery的用户都可以查看且使用该资产。 “指定用户”:表示仅特定用户可以查看及使用该资产。
为两部分:镜像大小和容器中新安装文件的大小。因此有两种方法来解决该问题: 减少容器中新安装文件的大小 删除用户在Notebook新安装的内容,比如用户在Notebook中下载了很多文件,可以将这些文件删除。这种方法仅适用于除/home/ma-user/work和/cache目录外
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加
info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的
info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的
描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 auto_sync_dataset 否 Boolean 团队标注任
info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的
info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的
info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的
info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的
info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的
info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipeline-model-parallel-size),可以尝试增加