检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Port:端口号 在VS Code中手工配置远程连接时,在本地的ssh config文件中增加配置参数“StrictHostKeyChecking no”和“UserKnownHostsFile=/dev/null” Host xxx HostName x.x.x.x #IP地址
Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注数据及选择的场景,无需任何代码开发,自动生成满足用户精度要求的模型。可支持图片分类、物体检测、预测分析、声音分类等场景。可根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型。 费用说明:本案例使用过程中,从AI
当链接关闭后失效;新打开建立的链接只允许当前设置的IP进行访问。 此处的IP地址,请填写外网IP地址。如果用户使用的访问机器和华为云ModelArts服务的网络有隔离,则访问机器的外网地址需要在主流搜索引擎中搜索“IP地址查询”获取,而不是使用ipconfig或ifconfig/ip命令在本地查询。
odelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数和训练输出路径参数。这四种输入搭建了用户代码和ModelArts Standard后台交互的桥梁。 代码目录路径 您需要在OBS桶中指定代码目录,并将训练代码、依赖
如何查看ModelArts的Notebook使用的cuda版本? 在ModelArts的Notebook中如何获取本机外网IP? ModelArts的Notebook有代理吗?如何关闭? 在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel? 在Mod
3指使用0-3卡执行训练任务。 训练成功标志 “***** train metrics *****”关键字打印 训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 1、如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:训练常见问题解决。
3指使用0-3卡执行训练任务。 训练成功标志 “***** train metrics *****”关键字打印 训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 1、如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:训练常见问题解决。
3指使用0-3卡执行训练任务。 训练成功标志 “***** train metrics *****”关键字打印 训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:训练常见问题解决。
微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data) --tokenizer-type:tokenizer的类型,可选项有['B
型转换任务列表和详情功能。 如您有任何问题,可随时通过工单或者服务热线(+86-4000-955-988或+86-950808)与我们联系。 常见问题 为什么要下线模型转换? ModelArts模型转换向AI开发者提供了便捷的模型转换页面,将Tensorflow和Caffe框架的
一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。此外,问题定位主要基于GPU环境和NPU环境上运行的过程数据做对比,所以需要分别准备GPU和NPU训练环境,大部分场景需要规模相同的训练环境。如果已经将模型缩减到单机可运行,则只是单台GPU设备即可。 定位前的排查当前主要包含如下几个方面:
msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精度预检工具旨在计算单个API在整
值,并在后续节点中使用。 针对部署在公共资源池的服务,可以通过access_address属性从输出中获取注册在公网的推理地址。 针对部署在专属资源池的服务,除了可以获取注册在公网的推理地址,还能通过cluster_inner_access_address属性从输出中获取内部使用
量类型为“raw”和“string”。 表单字段类型为“input”时,支持的变量类型有“boolean”、“date”、“integer”、“number” 、“raw”和“string”。 表单字段类型为“slider”时,支持输入滑动条的最小值、最大值和步长。 Hide code
=====" 转换结果如下,其中safety_checker模型转换成功,但中间有ERROR日志,该ERROR属于常量折叠失败,不影响结果。 图2 转换结果 动态分档模型转换(可选) 如果迁移的模型有多个shape档位的需求,可以通过如下方式对模型进行分档转换。 动态分档是指将模
推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B单机单卡。 表1 环境要求 名称 版本 driver 23.0.6 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6
模型的自定义镜像制作流程 如果您使用了ModelArts不支持的AI引擎开发模型,也可通过制作自定义镜像,导入ModelArts创建为模型,并支持进行统一管理和部署为服务。 制作流程 场景一: 预置镜像的环境软件满足要求,只需要导入模型包,就能用于创建模型,通过镜像保存功能制作。具体案例参考在Not
Dify是一个能力丰富的开源AI应用开发平台,为大型语言模型(LLM)应用的开发而设计。它巧妙地结合了后端即服务(Backend as Service)和LLMOps的理念,提供了一套易用的界面和API,加速了开发者构建可扩展的生成式AI应用的过程。 操作步骤 在Dify界面右上角单击用户头像,选择“设置”。 在
请根据构建日志报错信息,定位服务预测失败原因,修改模型推理代码后,重新导入模型进行预测。 经典案例:在线服务预测报错MR.0105 出现其他情况,优先检查客户端和外部网络是否有问题。 以上方法均未解决问题,请联系系统管理员。 父主题: 服务预测
新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。推荐用户使用该方式进行训练。 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件