检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
uation/benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip}
uation/benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip}
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?s
y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内. 检测框对应的文本描述也可以通过<ref>text_caption</ref>表示。 json文件中的图片路径为数据集相对路径,例如qwenvl_dataset/new_
y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内. 检测框对应的文本描述也可以通过<ref>text_caption</ref>表示。 json文件中的图片路径为数据集相对路径,例如qwenvl_dataset/new_
per-channel Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?s
介绍多机多卡数据并行分布式训练原理和代码改造点。 示例:创建DDP分布式训练(PyTorch+GPU):提供了分布式训练调测具体的代码适配操作过程和代码示例。 示例:创建DDP分布式训练(PyTorch+NPU):针对Resnet18在cifar10数据集上的分类任务,给出了分布
per-channel Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?s
advisor插件的昇腾PyTorch性能调优主要分为以下步骤: 准确采集性能劣化时刻的profiling数据。 存储profiling数据。 创建advisor分析环境。 操作步骤 明确性能问题类型,准确采集性能劣化时刻的profiling数据。 对于固定step出现性能劣化,如固定在16步出现性能劣化,则需要合
从0制作自定义镜像用于创建训练作业(MindSpore+Ascend) 训练框架的自定义镜像约束 推荐自定义镜像使用ubuntu-18.04的操作系统,避免出现版本不兼容的问题。 自定义镜像的大小推荐15GB以内,最大不要超过资源池的容器引擎空间大小的一半。镜像过大会直接影响训练作业的启动时间。
时可以基于保存的镜像创建训练作业。 message String 镜像创建的时间,UTC毫秒。 create_time Long 镜像保存操作过程中,展示构建信息。 请求示例 如下以创建uuid为2cd88daa-31a4-40a8-a58f-d186b0e93e4f的训练作业对应worker-0镜像保存任务为例。
确认参数填写无误后,单击“创建”,完成数据处理任务的创建。 数据校验算子说明(MetaValidation算子) ModelArts的数据校验通过MetaValidation算子实现。当前ModelArts支持jpg、jpeg、bmp、png四种图片格式。物体检测场景支持xml标注格
LabelAttribute 参数 参数类型 描述 default_value String 标签属性默认值。 id String 标签属性ID。可通过调用标签列表查询。 name String 标签属性名称。不能超过64个字符,不能包含字符!<>=&"'。 type String 标签属性类型。可选值如下:
0-py3-none-any.whl #安装 模型剪枝 可以在Huggingface开源社区获取需剪枝的模型权重或者获得业务上已预训练好的模型权重,通过AscendModelNano工具进行FASP剪枝。 CUDA_VISIBLE_DEVICES=0 python3 -m model_nano
per-channel Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?s
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?s
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?s
则为空,默认值为空。 source_type 否 String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。 model_type 是 String 模型类型,取值为:Tenso
txt” 非必选文件,环境配置文件,定义了项目依赖的python包。AI Gallery提供了基础镜像的依赖环境,如果要添加自定义依赖项,可通过requirements.txt文件实现。基础镜像包含python、PyTorch、cuda(GPU)、CANN(NPU)。 自定义模型规范(推理)
样本状态。可选样本状态如下: __ALL__:已标注 __NONE__:未标注 __UNCHECK__:待验收 __ACCEPTED__:验收通过 __REJECTED__:已驳回 __UNREVIEWED__:待审核 __REVIEWED__:已审核 __WORKFORCE_SAMPLED__:已采样