检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
企业在具体使用大模型接入企业应用系统的时候,不仅要考虑模型体验情况,还需要考虑模型具体的精度效果,和实际应用成本。 MaaS提供灵活的模型开发能力,同时基于昇腾云的算力底座能力,提供了若干保障客户商业应用的关键能力。 保障客户系统应用大模型的成本效率,按需收费,按需扩缩的灵活成本效益资源配置方案,有效避免了资源闲置与浪费,降低了进入AI领域的门槛。
把不同应用开发过程的输出内容划分到不同工作空间中,便于管理和使用。 基于工作空间可以实现资源逻辑隔离、资源配额管理、细粒度鉴权和资源清理能力。工作空间组件可以将ModelArts各类资源整合,以工作空间体现给企业项目管理服务。 工作空间支持3种访问控制: PUBLIC:租户(主账号和所有子账号)内部公开访问。
创建Workflow数据集标注节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的标注功能。数据集标注节点主要用于创建标注任务或对已有的标注任务进行卡点标注,主要用于需要对数据进行人工标注的场景。 属性总览 您可以使用LabelingStep来构建数据集标注节点,LabelingStep结构如下:
、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。 当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文
K8S标签:设置附加到Kubernetes对象(比如Pod)上的键值对。最多可以添加5条标签。使用该标签可区分不同节点,可结合工作负载的亲和能力实现容器Pod调度到指定节点的功能。 污点:默认为空。支持给节点加污点来设置反亲和性,每个节点最多配置5条污点。 安装后执行脚本:请输入脚
样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型精确
<model_name>:训练模型名,如qwen2.5-7b <run_type>:训练策略类型及数据序列长度:【lora:4096-lora、full:4096-full】 训练完成后,test-benchmark目录下会生成训练日志及NPU利用率日志及权重文件,如qwen2.5-7b日志: qwen2.5-7b
<model_name>:训练模型名,如qwen2.5-7b <run_type>:训练策略类型及数据序列长度:【lora:4096-lora、full:4096-full】 训练完成后,test-benchmark目录下会生成训练日志及NPU利用率日志及权重文件,如qwen2.5-7b日志: qwen2.5-7b
样本比率,反映模型对正样本的识别能力。 precision 精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1 F1值 F1值是模型精确
样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型精确
样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型精确
、png。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 物体检测数据集中,如果标注框坐标超过图片,将无法识别该图片为已标注图片。 数据上传至OBS 在本文档
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
创建Workflow训练作业节点 功能介绍 该节点通过对算法、输入、输出的定义,实现ModelArts作业管理的能力。主要用于数据处理、模型训练、模型评估等场景。主要应用场景如下: 当需要对图像进行增强,对语音进行除噪等操作时,可以使用该节点进行数据的预处理。 对于一些物体检测,
便您在ModelArts平台环境中进行训练推理迁移、精度调试、性能调优等工作,您可在下表中查看当前ModelArts支持的昇腾迁移调优工具及对应指导。 表格中的部分工具已集成到ModelArts基础镜像中(镜像地址详见基础镜像章节)。如果您使用的是ModelArts基础镜像,可先
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.911)
训练完成后,test-benchmark目录下会生成训练日志及NPU利用率日志,如qwen2.5-7b日志。 qwen2.5-7b-sft-4096-lora-313T-20241028_164746-0.txt,打印吞吐值及训练参数 qwen2.5-7b-sft-4096-lora
样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型精确
构建Workflow多分支运行场景 编排Workflow 发布Workflow 在Workflow中更新已部署的服务 Workflow高阶能力 父主题: 使用Workflow实现低代码AI开发