检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
断点续训和故障快恢说明 相同点 断点续训(Checkpointing)和故障快恢都是指训练中断后可从训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成的
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大
PD分离部署使用说明 什么是PD分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token
Eagle投机小模型训练 什么是Eagle投机小模型训练 2013年12月滑铁卢大学、加拿大向量研究院、北京大学等机构联合发布Eagle,旨在提升大语言模型的推理速度,同时保证模型输出文本的分布一致。这种方法外推LLM的第二顶层特征向量,能够显著提升生成效率。 Eagle训练了一个单层模型
各模型支持的最小卡数和最大序列 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40G
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备权重 获取对应模型的权重文件,获取链接参考表1。 权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。 方法二:huggingface-cli:huggingface-cli
准备镜像 镜像方案说明 ECS获取和上传基础镜像 ECS中构建新镜像(可选) 父主题: 准备工作
PD分离性能调优工具使用说明 PD分离性能调优工具包括两个脚本工具: 性能测试脚本与数据可视化脚本。 PD分离调优时需要使用性能测试脚本分别跑出混推与PD分离的性能数据, 并使用数据可视化工具将两个场景的数据绘制在一起,进行对比分析收益。 PD混合推理性能评测 PD混合推理性能测试执行脚本如下所示
从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_64
在运行finetune_ds.sh 时遇到报错 在运行finetune_ds.sh 时遇到报错 pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig stage3
联网下载SimSun.ttf时可能会遇到网络问题 联网下载SimSun.ttf时肯会遇到网络问题 tonkenization_qwen.py会在cache中读取SimSun.ttf 文件,如果没有,就会联网下载,可能会遇到: SSL:CERTIFICATE_VERIFY_FAILED
联网下载SimSun.ttf时可能会遇到网络问题 联网下载SimSun.ttf时肯会遇到网络问题 tonkenization_qwen.py会在cache中读取SimSun.ttf 文件,如果没有,就会联网下载,可能会遇到: SSL:CERTIFICATE_VERIFY_FAILED
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接 如果本地为Linux系统,见原因分析二。 原因分析一 自动安装VS Code插件ModelArts-HuaweiCloud失败。 解决方法一 方法一:检查VS Code网络是否正常
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表1。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户有自定义开发的需要,比如查看和编辑代码、数据预处理、权重转换等操作,可通过Notebook
连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决? 问题现象 原因分析 通过查看日志发现本地vscode-scp-done.flag显示成功上传