检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练后的模型需使用“在线部署”,才可以使用本章节提供的方法进行调用。本章节分别介绍使用Postman调用API和多语言(Java/Python/Go)调用API的方法,仅供测试使用。 前提条件 使用API调用模型前,需要先开通盘古大模型服务。
提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
提示词写作实践 提示工程介绍 常用方法论 进阶技巧 写作示例
写作示例 意图匹配 面试问题生成 父主题: 提示词写作实践
进阶技巧 设置背景及人设 理解底层任务 CoT思维链 考察模型逻辑 父主题: 提示词写作实践
单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。
意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 写作示例
什么是好的提示词 好的提示词内容明确且具体,能够指导语言模型稳定输出有效、无害的文本,帮助业务高效完成任务和达成任务目标。 父主题: 提示词写作实践
常用方法论 打基础 补说明 搭结构 排顺序 补预设 父主题: 提示词写作实践
Prompt(提示词模板) 提示词模板模块提供模板格式化、自定义配置管理功能。
当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。 父主题: 进阶技巧
对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时需要指明“上面的xxx”。例如:“为什么你认为上面的xxx是xxx类别?为什么上面的xxx不是xxx类别?”
打基础 先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。
规范输出格式 如果需要约束输出格式,可以在提示词里体现。请注意输出格式中的key不要有语义重复,并且需要与前文要求中的key名字保持一致,否则模型会不理解是同一个key。 恰当的表述 可以尝试从英语的逻辑去设计提示词。 最好是主谓宾结构完整的句子,少用缩写和特殊句式。
排顺序 在提示词中内容的顺序也很重要,基于盘古大模型调优经验,将关键信息放在结尾处,模型输出效果更好。不同任务的关键信息不同,若需要模型生成的内容更具创意性,关键信息需要为内容描述;需要模型严格遵循指令进行回复的,关键信息为指令及说明。 父主题: 常用方法论
补预设 当任务存在多个情境时,编写提示词时需要考虑全面,需要做好各种情境的预设,告知模型对应策略,可以有效防止模型误回答以及编造输出。 父主题: 常用方法论
、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比如“以上是金融领域的新闻”、“以上是一篇xx领域的xxx文档”。
搭结构 提示词的结构需要尽可能直观,不要将指令、上下文、说明等内容放在一行输入,适当的换行将提示词的内容结构拆分体现出来。一个结构清晰的提示词输入,能够让模型更好地理解您的意图。 另外,上下文可以用'''xxx'''三引号区隔开,以防止指令冲突。
面试问题生成 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 写作示例
Prompt(提示词模板) 提示词模板模块提供模板格式化、自定义配置、few-shot管理功能。