检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Server为一台弹性裸金属服务器,您可以使用BMS服务提供的切换操作系统功能,对Lite Server资源操作系统进行切换。本文介绍以下三种切换操作系统的方式: 在BMS控制台切换操作系统 使用BMS Go SDK的方式切换操作系统 使用Python封装API的方式切换操作系统 切换操作系统需满足以下条件:
NPU推理指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。 本文档主要介绍如何利用ModelArts Lite
in/AscendSpeed 下,先修改以下命令中的参数,再复制执行。xxx-Ascend请根据实际目录替换。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下: 传递参数形式:将主节点IP地址、节点个数、节点RANK的参数传递至运行的脚本中执行。 # 单机执行命令为:sh
in/AscendSpeed 下,先修改以下命令中的参数,再复制执行。xxx-Ascend请根据实际目录替换。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下: 传递参数形式:将主节点IP地址、节点个数、节点RANK的参数传递至运行的脚本中执行。 # 单机执行命令为:sh
给子账号配置文件夹级的SFS Turbo访问权限 场景描述 本文介绍如何配置文件夹级的SFS Turbo访问权限,实现在ModelArts中访问挂载的SFS Turbo时,只允许子账号访问特定的SFS Turbo文件夹内容。 给子账号配置文件夹级的SFS Turbo访问权限为白名
in/AscendSpeed 下,先修改以下命令中的参数,再复制执行。xxx-Ascend请根据实际目录替换。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下: 传递参数形式:将主节点IP地址、节点个数、节点RANK的参数传递至运行的脚本中执行。 # 单机执行命令为:sh
in/AscendSpeed 下,先修改以下命令中的参数,再复制执行。xxx-Ascend请根据实际目录替换。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下: 传递参数形式:将主节点IP地址、节点个数、节点RANK的参数传递至运行的脚本中执行。 # 单机执行命令为:sh
获取训练镜像。 请确保在正确的Region下获取镜像。建议使用官方提供的镜像部署训练服务。镜像地址{image_url}请参见表1。 docker pull {image_url} 在ECS中Docker登录。 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临
快速配置ModelArts委托授权章节中介绍的一键式自动授权方式创建的委托的权限比较大,基本覆盖了依赖服务的全部权限。如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用ModelArts服务的其他功能。 ModelArts作为一个完备的AI开发平台,支持用户对
volumes=[nfs-x]”。 原因分析 用户账号下的SFS Turbo所在的VPC网络需要与专属资源池所在的网络打通,运行于该专属资源池的训练作业才能正常挂载SFS。因此,当训练作业挂载SFS失败时,可能是网络不通导致的。 处理步骤 进入训练作业详情页,在左侧获取SFS Turbo的名称。 图1 获取SFS
在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。
906-xxx.zip中的AscendCloud-AIGC-6.3.906-xxx.zip文件。获取路径:Support-E。 如果没有软件下载权限,请联系您所在企业的华为方技术支持下载获取。 代码包文件名中的xxx表示具体的时间戳,以包名的实际时间为准。 Step1 准备环境
_eval.sh中的参数 模型存放的地方,如果根据第2步的方式保存的模型,设置如下: CKPT="llama-vid/llama-vid-7b-full-224-video-fps-1" 调用openai的key,评估精度时需要调用openai,需要填写正确的key,这个可能需要进行付费调用,评估1000条大概需要0
Pair的key为难例原因出现的次数,Pair的value为难例原因HardDetail。 key_sample_stats Map<String,Integer> 难例统计信息。 label_stats Array of LabelStats objects 标签统计信息列表。
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。
模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格为空数据,表示
NPU预训练指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。 本文档主要介绍如何利用ModelArts Lite
Pair的key为难例原因出现的次数,Pair的value为难例原因HardDetail。 key_sample_stats Map<String,Integer> 难例统计信息。 label_stats Array of LabelStats objects 标签统计信息列表。
新创建的节点设置不同于资源池的计费模式,例如用户可以在包周期的资源池中创建按需的节点。如果用户不指定该参数,创建的节点计费模式和资源池保持一致。 在“专属资源池扩缩容”页面,设置“资源配置 > 可用区”,可用区可选择随机分配和指定AZ。 选择随机分配时,扩缩容完成后,节点的可用区分布由系统后台随机选择。
每个输出序列要生成的最大tokens数量。 top_k 否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。