检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池
Gallery中,可以报名参加正在进行中的实践活动。 查找实践活动 进入AI Gallery首页,单击“实践”,在下拉框中单击“实践 >”,进入实践首页。 在实践页面,有“进行中”、“即将开始”和“已结束”三种状态的实践活动筛选方式。 图1 查找实践活动 单击右上方的“我的实践”可以跳转到个人中心(“我的Gallery
w-1.8”的环境中使用pip安装Shapely。 打开一个Notebook实例,进入到Launcher界面。 在“Other”区域下,选择“Terminal”,新建一个terminal文件。 在代码输入栏输入以下命令,获取当前环境的kernel,并激活需要安装依赖的python环境。
发现“no-auto-default=*”是打开的状态,“no-auto-default=*”含义是关闭DH Client,无法使用DHCP获取IP。正常情况下裸金属服务器这个参数是被注释的状态。 当服务器有网卡配置文件, NetworkManager.service实现将VPC子网分配的私有IP写入网卡配置文件中。NetworkManager
_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有在rank
max_model_len 解决方法: 修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config
_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有在rank
vpc下的某一台机器上。单击连接信息下kubectl后的“配置”按钮,根据界面提示使用kubectl工具。 图11 通过内网使用kubectl工具 通过公网使用kubectl工具,可以将kubectl安装在任一台可以访问公网的机器。 首先需要绑定公网地址,单击公网地址后的“绑定”按钮。
Turbo模式下执行流程 SFS Turbo作为完全托管的共享文件存储系统,在本方案中作为主要的存储介质应用于训练作业。因此,后续需要准备的原始数据集、原始Hugging Face权重文件以及训练代码都需要上传至SFS Turbo中。而基于SFS Turbo所执行的训练流程如下:
Notebook实例的存储配置采用的是云硬盘EVS。 图1 创建Notebook实例时选择云硬盘EVS存储 单次最大可以扩容100GB,扩容后的总容量不超过4096GB。 云硬盘EVS存储容量最大支持4096GB,达到4096GB时,不允许再扩容。 实例停止后,扩容后的容量仍然有效。计
3567:用户只能访问自己账号下的obs目录,ModelArts在读取其他用户obs下的数据时,需要用户委托权限,没有创建委托,就没有权限使用其他用户obs中的数据。 登录ModelArts控制台,管理控制台,在左侧导航栏中选择“权限管理”,单击“查看权限”,检查是否配置了obs的委托权限。 图1
SSE主要解决了客户端与服务器之间的单向实时通信需求(例如ChatGPT回答的流式输出),相较于WebSocket(双向实时),它更加轻量级且易于实现。 前提条件 在线服务中的模型导入选择的镜像需支持SSE协议。 约束与限制 SSE协议只支持部署在线服务。 只支持自定义镜像导入模型部署的在线服务。 调
表示读取资源池镜像中的默认值。 绑核:开启CPU绑核表示工作负载实例独占CPU,可以提升应用性能(比如训练作业、推理任务性能),减少应用的调度延迟,适用于对CPU缓存和调度延迟敏感的场景。关闭绑核表示关闭工作负载实例独占CPU的功能,优点是CPU共享池可分配的核数较多。也可关闭系
max_model_len 解决方法: 修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config
修改模型服务QPS 流量限制QPS是评估模型服务处理能力的关键指标,它指示系统在高并发场景下每秒能处理的请求量。这一指标直接关系到模型的响应速度和处理效率。不当的QPS配置可能导致用户等待时间延长,影响满意度。因此,能够灵活调整模型的QPS对于保障服务性能、优化用户体验、维持业务流畅及控制成本至关重要。
_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有在rank
_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有在rank
运行中”时,单击“操作”列中的“打开”,进入“JupyterLab Notebook”开发页面。 在JupyterLab的“Launcher”页签下,以TensorFlow为例,您可以单击TensorFlow,创建一个用于编码的文件。 图1 选择不同的AI引擎 文件创建完成后,系
max_model_len 解决方法: 修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config
标注作业详情页中,展示了此标注作业中“未标注”和“已标注”的文本,默认显示“未标注”的文本列表。 在“未标注”页签文本列表中,页面左侧罗列“标注对象列表”。在列表中单击需标注的文本对象,在右侧标签集下显示的文本内容中选中需要标注的部分,然后选择右侧“标签集”中的标签进行标注。 以此类推,不断选中标注对象,并为其添加标签。