检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
说明 工作空间 查询企业项目列表 查询用户在当前项目id下的企业项目列表。 创建工作空间 用于在推荐系统下面创建独立的工作空间,用于资源的隔离 查询工作空间列表 用于查询当前用户具有操作权限的工作空间列表。 查询工作空间详情 查询指定工作空间的具体信息。 更新工作空间 更新工作空间信息
服务隔离的功能,达到不同角色用户信息隔离管理的目的。 如果您未开通企业项目管理服务的权限,您可以在RES创建自己独立的工作空间。 如果你开通了企业项目管理服务的权限,可以在创建工作空间的时候绑定企业项目,并在企业项目下添加用户组,为不同的用户组设置细粒度权限供组里的用户使用。 工作空间功能
为账号充值 当您使用RES时,建议您先为您的账号充值,确保账号有足够余额可以正常使用RES,具体操作请参见如何给华为云帐户充值。如果您账号里有足够的余额,可略过此部分内容。 父主题: 准备工作
学工作站”的名字。这座木屋,凝聚了“山东哥哥”与贵州山区儿童之间的情谊,也见证了一位名叫隋刚的淄博“80后”小伙18年来的坚守。", "绝大多数用户的需求往往是关注主流内容和商品。而忽略相对冷门的大量“长尾”信息,导致很多优秀的内容或商品没有机会被用户发现和关注。"
优先原则。 如果您给用户授予RES FullAccess的系统策略,但不希望用户拥有RES FullAccess中定义的删除作业权限,您可以创建一条拒绝删除作业的自定义策略,然后同时将RES FullAccess和拒绝策略授予用户,根据Deny优先原则,则用户可以对RES执行除了
数据质量管理 数据结构 数据导入 数据探索 父主题: 数据源管理
数据源的数据格式和近线数据导入的格式要求一致,包括用户数据、物品数据和行为数据。 用户数据 用户数据包括数据源中的“用户属性表”和用于近线计算的“用户画像”数据。用户数据记录用户的属性信息,例如地域、爱好等。 物品数据 物品数据包括数据源中的“物品属性表”和用于近线计算的“物品画
特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。 排序策略-离线特征工程 排序策略 排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。 排序策略-离线排序模型 在线服务 在线服务用来做线上推荐时的应用,每个
画像:画像分为用户画像和物品画像,分别用于存储用户输入的用户特征和物品特征。如果同一用户或物品有多条记录,将会按照用户ID或者物品ID去重。 前提条件 已按照创建离线数据源操作指导完成数据源的创建。 已完成数据结构识别和人工复核确认。 操作步骤 在“执行步骤”页签,单击数据导入下的“执行
用户报表:根据不同数据格式展示用户数据的类型、最大值和最小值。您可以单击相关数据后的查看数据的详细信息。 百分位数:将数据进行排序,统计该数据在整个数据中所占的百分比。 图2 百分位数 分布统计:通过查看分布统计了解各参数下参数值的分布情况。如可以根据性别展示数据中的性别数据分布。可通过查看标签,了解数据中各种标签的分布情况。
服务,并且只需为您所使用的服务付费。 操作步骤 进入华为云首页,单击页面右上角的“注册”。 设置手机号、短信验证码、账号名、密码并勾选“我已阅读并同意《华为云用户协议》和《隐私政策声明》”,单击“同意协议并注册”。 页面提示注册成功后,系统会自动跳转至您的个人信息界面。 参考实名认证完成个人或企业帐号实名认证。
算法介绍及参数说明 召回策略 过滤规则 排序策略-离线特征工程 排序策略-离线排序模型 在线服务 效果评估 父主题: 自定义场景
推荐系统提供了重新执行作业的API,用来将任务以相同的配置重新执行一次,实现对离线任务生成结果的更新。以固定的周期定时调用此API,可保持结果处于一个较新的状态,以获得更好的推荐结果。 以上功能,我们也可以使用数据治理中心 DataArts Studio,通过拖拽的方式完成配置。具体操作步骤如下:
滤规则用于过滤最终用户的推荐结果。例如,对于一线城市的用户过滤敏感信息物品,使之不进入候选集。单击增加属性过滤规则。 “用户属性”:指定在用户属性中需要过滤的字段,包含属性名和属性值。如过滤籍贯是广东且性别为男性的用户。 “物品属性”:指定在物品属性中需要过滤的字段,包含属性名和
过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。对于每个需要过滤的行为,生成用户具有该行为的物品的列表。再对同用户的每种行为的物品列表进行“与”或者“或”的关系,最终生成用户-物品过滤表。 表1 过滤规则参数说明 参数名称 说明 名称 自定义过滤规则名称。由中文、英
光。 阈值:阈值是用来衡量用户行为有效性的标准, 当数据源的actionMeasure的值大于阈值时, 当前用户行为有效。 去重:您可以单击勾选,根据用户对行为记录去重。 指标设置 指标名称:请您定义评估的指标名称。 指标公式:用户指定自定义指标公式,如:A/(A+B),参数A、
置调度的时间间隔。 基于用户的协同过滤推荐 基于用户的协同过滤推荐采用经典算法基于用户的协同过滤(UserCF)进行召回。基于用户的协同过滤算法是通过用户的历史行为数据发现用户对物品的喜欢(如购买,收藏,内容评论或分享),并对这些喜好进行度量和打分。根据不同用户对相同物品的态度和
描述 对于特征工程的描述信息。 待提取用户特征 排序模型需要经特征工程处理后的数据, 选择排序模型需要的用户特征, 未选择的用户特征将不会被处理,即排序模块将忽略这些特征。 说明: 离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。 单击,增加用户特征。在下拉选项中
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
行条化策略(属性匹配召回作业、物品协同过滤召回作业、用户协同过滤召回作业需要提供此参数)。 match_type 否 String 匹配类型(属性匹配召回作业需提供此参数): UI,基于用户推荐物品 UU,基于用户推荐用户 II,基于物品推荐物品 IU,基于物品推荐用户 matrix_factorization