检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
学习率设置得过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或者减小学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置得过小
准确又及时的答案。 登录盘古大模型套件平台,在左侧导航栏中选择“能力调测”。 单击“多轮对话”页签,选择使用N2系列模型,在页面右侧“参数设置”中可以开启搜索增强功能。 图1 体验搜索增强能力
初始化盘古LLM LLM llm = LLMs.of(LLMs.PANGU); 基础问答:基础的模型文本问答,temperature等参数采用模型默认的设置。 llm.ask("你是谁?").getAnswer(); 同时调用多个不同的LLM。 final LLMConfig config =
式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback 事件流回调 */ void setStreamCal
量差,或学习率设置过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或减小学习率来解决。 图4 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss曲线平缓且保持高位不下降的原因可能是目标任务的难度较大,或模型的学习率设置过小,导致模型
为Agnet的执行状态。 通过监听终止Agent的执行 当需要在Agent的执行过程中终止执行时,除了通过setMaxIterations设置Agent的最大迭代次数,也可以通过实现监听器的on_check_interrupt_requirement实现。 class Inter
directory”报错,表示当前数据集格式、数据命名、数据存储路径不满足训练要求。 解决方案:请参考数据格式要求校验数据集格式。 请检查数据集路径是否设置正确。 图2 no such file or directory报错 The dataset size is too small报错 报错
话题重复度控制(presence_penalty) -2~2 0 话题重复度控制主要用于控制模型输出的话题重复程度。 参数设置正值,模型倾向于生成新的、未出现过的内容;参数设置负值,倾向于生成更加固定和统一的内容。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 为
SearchTool()); } 静态工具和动态工具的注册方式相同,通过addTool接口进行注册。 通过setMaxIterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。 Agent使用的模型必须为Pangu-NLP-N2-
用户已经提供了公司名称"方欣科技有限公司",并指定了时间范围为今年1月。我将设置"report_type"为"经营异常风险检测",并将"skssqq"设置为"2024-01-01","skssqz"设置为"2024-01-31"。现在,我将调用工具。 行动:使用工具[risk_detection]
受技术等多种因素制约,盘古大模型服务存在一些约束限制。 每个模型请求的最大Token数有所差异,详细请参见模型的基础信息。 模型所支持的训练数据量、数据格式要求请参见《用户指南》“准备盘古大模型训练数据集 > 模型训练所需数据量与数据格式要求”。
查看对应编程语言类型的SDK代码。 图1 获取SDK代码示例 当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数 填写输入参数时,deployment_id为模型部署ID,可以在盘古大模型套件平台“服务管理”功能中获取。 图3 服务管理 图4
自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate) 7.5e-05 学
自监督训练: 不涉及 有监督微调: 该场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 6 学习率(learning_rate) 7.5e-05 学
ClientBuilder.build(ClientBuilder.java:98) HttpConfig这个类在sdk-core包里面找不到,造成原因为用户使用的sdk版本太老导致,建议使用最新版本的华为云java sdk,运行代码再具体定位。 java.lang.NoSuchFieldError:
模型的部署ID,获取方法请参见获取模型调用API地址。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。 用于获取操作API的权限。获取Token接口响应消息头中X-Subject-Token的值即为Token。 Content-Type
模型的基础信息 盘古大模型平台为用户提供了多种规格的模型,涵盖从基模型到功能模型的多种选择,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型
模型都能以高准确率完成任务,为用户提供高质量的输出结果。 这种卓越的表现源于其先进的算法和深度学习架构。盘古大模型能够深入理解语言的内在逻辑与语义关系,因此在处理复杂语言任务时展现出更高的精准度和效率。这不仅提高了任务的成功率,也大幅提升了用户体验,使盘古大模型成为企业和开发者构建智能应用的首选。
型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减的最小值。计算公式为:最小学习率=学习率*学习率衰减比率。 参数的选择没有标准答案,您需要根据任务的实际情况进行调整,以上建议值仅供参考。
expired”(证书已过期)或“unable to verify the first certificate”(无法验证第一个证书)等。可以在Postman的设置中关闭“SSL certificate verification”选项。 关于盘古大模型API的详细请求参数、响应参数介绍请参见《API参考》文档。