检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
量差,或学习率设置过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或减小学习率来解决。 图4 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss曲线平缓且保持高位不下降的原因可能是目标任务的难度较大,或模型的学习率设置过小,导致模型
批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。 数据行数不小于10行,不大于50行。
*/ private String finalAnswer = ""; /** * 本次session的用户query */ private List<ConversationMessage> messages; /**
Agent运行Session,包含历史Action,当前Action,状态 Attributes: messages: 本次session的用户的输入 session_id: UUID,在一个session内唯一 current_action: 当前Action
式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback 事件流回调 */ void setStreamCal
AgentSession。 set_tool_output:向Agent的当前步骤设置工具返回结果。 set_user_feedback:向Agent的当前步骤设置用户反馈。 打印结果为: 用户: 请帮我查一下方欣科技有限公司今年1月的经营异常风险 助手: 根据企业健康体检工具的
获取项目ID 从控制台获取项目ID 登录管理控制台。 在页面右上角的用户名的下拉列表中选择“我的凭证”。 图1 我的凭证 在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服
进阶技巧 设置背景及人设 理解底层任务 CoT思维链 考察模型逻辑 父主题: 提示词写作实践
oken值传入盘古API的请求header参数中,实现盘古服务在接收到用户的API请求时进行身份验证。 关于Token有效期的详细说明请参见获取IAM用户Token(使用密码)。 获取token步骤如下: 登录“我的凭证 > API凭证”页面,获取user name、domain
申请体验盘古大模型服务 盘古大模型为用户提供了五大模型的体验,包括NLP大模型、CV大模型、多模态大模型、预测大模型与科学计算大模型,用户可根据所需提交体验申请,申请通过后才可以体验盘古大模型功能。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。
import LLMParamConfig from pangukitsappdev.api.llms.factory import LLMs # 设置SDK使用的配置文件 os.environ["SDK_CONFIG_PATH"] = "./llm.properties" # 初始化LLMs
体验盘古驱动的应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中选择“应用百宝箱”,进入“应用百宝箱”页面。
AI助手 什么是AI助手 配置AI助手工具 配置知识库 创建AI助手 调测AI助手 调用AI助手API
提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
训练盘古大模型 选择模型与训练方法 创建训练任务 查看训练任务详情与训练指标 常见训练报错与解决方案
评估盘古大模型 创建模型评估数据集 创建模型评估任务 查看评估任务详情
调用盘古大模型 开通盘古大模型服务 使用“能力调测”调用模型 使用API调用模型 启用模型内容审核 统计模型调用量
使用盘古大模型服务前,需要进行一系列准备工作,确保您能够顺利使用盘古大模型服务。 准备工作 申请试用盘古大模型服务 创建并管理盘古工作空间 配置服务访问授权 04 AI一站式流程 通过一站式流程,完成从数据集准备、模型训练、压缩、部署到调用和迁移,全面掌握盘古大模型的开发过程。同时,结合应
部署盘古大模型 部署为在线服务 部署为边缘服务
平台资源管理 管理模型资产、推理资产 获取Token消耗规则