检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
视频数据集无法显示和播放视频 若无法显示和播放视频,请检查视频格式类型,目前只支持MP4格式。 父主题: Standard数据管理
文生视频模型训练推理 CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) Open-Sora-Plan1.0基于DevServer适配PyTorch
ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab 视频介绍 03:32 JupyterLab简介 VS Code Toolkit 视频介绍 03:32
人工标注视频数据 由于模型训练过程需要大量有标签的视频数据,因此在模型训练之前需对没有标签的视频添加标签。通过ModelArts您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelA
mp4 ├── 2.mp4 ├── ... 每个 txt 与视频同名,为视频的标签。视频与标签应该一一对应。通常情况下,不使用一个视频对应多个标签。 如果为风格微调,请准备至少50条风格相似的视频和标签,以利于拟合。 修改CogVideo/sat/configs/cogvideox_*
pu.py --ckpt-path $CKPT_PATH 在NPU和GPU机器使用上面生成的固定随机数,分别跑一遍单机单卡推理,比较生成的视频是否一致。在NPU推理前,需要将上面GPU单机单卡推理生成的"./noise_test1"文件夹移到NPU相同目录下。NPU和GPU的推理命令相同,如下。
docker exec -it ${container_name} bash Step6 安装Decord Decord是一个高性能的视频处理库,在昇腾环境中安装需要修改一些源码进行适配。 Decord建议安装在 /home/ma-user/lib中。 安装x264 mkdir
X为按顺序自动生成的数字),具体位置打印在日志中。 Step9 推理 对于大尺寸、长时间的视频强制需要多卡推理,具体要求见下图,绿色允许只用单卡推理,蓝色至少双卡推理。 图5 推理视频要求 单卡推理 python inference.py configs/opensora-v1-2/inference/sample
Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入,然后和一个随机高斯噪声,一起输入到U-Net网络中进行不断去噪。在经过多次迭代后,最终模型将输出和文字相关的图像。 SD1.5 Finetune是指在已经训练好的SD1
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 方案概览
支持 - 支持 支持 支持 - - 命名实体 支持 支持 - 支持 支持 支持 - - 文本三元组 支持 支持 - 支持 支持 支持 - - 视频 支持 支持 - 支持 支持 支持 - - 自由格式 支持 - 支持 支持 支持 支持 - - 表格型 表格 支持 支持 - 支持 支持 支持
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 案例主要介绍如何基于ModelArts
tokenizer路径。 Megatron转HuggingFace参数说明 若用户需要自动转换,则在训练作业中,添加变量CONVERT_MG2HF并赋值True。若用户后续不需要自动转换,则在环境变量中必须删除CONVERT_MG2HF变量。 Megatron转HuggingFace脚本具体参数如下:
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 Wa
tokenizer路径。 Megatron转HuggingFace参数说明 如果用户需要自动转换,则在训练作业中,添加变量CONVERT_MG2HF并赋值True。如果用户后续不需要自动转换,则在环境变量中必须删除CONVERT_MG2HF变量。 Megatron转HuggingFace脚本具体参数如下:
tokenizer路径。 Megatron转HuggingFace参数说明 如果用户需要自动转换,则在训练作业中,添加变量CONVERT_MG2HF并赋值True。如果用户后续不需要自动转换,则在环境变量中必须删除CONVERT_MG2HF变量。 Megatron转HuggingFace脚本具体参数如下:
tokenizer路径。 Megatron转HuggingFace参数说明 如果用户需要自动转换,则在训练作业中,添加变量CONVERT_MG2HF并赋值True。如果用户后续不需要自动转换,则在环境变量中必须删除CONVERT_MG2HF变量。 Megatron转HuggingFace脚本具体参数如下:
如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/
tokenizer路径。 Megatron转HuggingFace参数说明 如果用户需要自动转换,则在训练作业中,添加变量CONVERT_MG2HF并赋值True。如果用户后续不需要自动转换,则在环境变量中必须删除CONVERT_MG2HF变量。 Megatron转HuggingFace脚本具体参数如下: