检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts最佳实践案例列表 在最佳实践文档中,提供了针对多种场景、多种AI引擎的ModelArts案例,方便您通过如下案例快速了解使用ModelArts完成AI开发的流程和操作。 DeepSeek模型推理场景 表1 样例 场景 说明 DeepSeek模型基于ModelArts
"a5a43175-30a6-43d2-9596-38bee562f8c0", "name": "pytorch_1_8", "namespace": "sdk-test2", "origin": "CUSTOMIZE", "resource_categories": [ "CPU"
CogVideoX模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.911) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型基于sat框架进行全量微调。本文档中提供的脚本,是基于原生CogVi
Lite Server算力资源和镜像版本配套关系 Lite Server提供多种NPU、GPU镜像,您可在购买前了解当前支持的镜像及对应详情。 NPU Snt9裸金属服务器支持的镜像详情 镜像名称:ModelArts-Euler2.8_Aarch64_Snt9_C78 表1 镜像详情
CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVid
使用PyCharm Toolkit插件连接Notebook 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接N
NPU服务器上配置Lite Server资源软件环境 注意事项 本文旨在指导如何在Snt9b裸金属服务器上,进行磁盘合并挂载、安装docker等环境配置。在配置前请注意如下事项: 首次装机时需要配置存储、固件、驱动、网络访问等基础内容,这部分配置尽量稳定减少变化。 裸机上的开发形
client_body_timeout 65s; client_header_timeout 65s; keepalive_timeout 65s; send_timeout 65s; # server_names_hash_bucket_size
obs:bucket:PutBucketCORS 您可通过以下方式在Notebook实例中操作OBS中的数据: 通过ModelArts SDK操作OBS数据。 通过Notebook文件上传功能操作OBS数据。 通过在Console页面添加OBS桶到Notebook实例的/data目录下,以文件方式操作OBS数据。
Open-Sora 1.0基于Lite Server适配PyTorch NPU训练指导(6.3.905) 本文档主要介绍如何在ModelArts Lite Server上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora训练和推理。 资源规格要求
GPU服务器上配置Lite Server资源软件环境 场景描述 本文旨在指导如何在GPU裸金属服务器上,安装NVIDIA、CUDA驱动等环境配置。由于不同GPU预置镜像中预安装的软件不同,您通过Lite Server算力资源和镜像版本配套关系章节查看已安装的软件。下面为常见的软件
JupyterLab常用功能介绍 JupyterLab视频介绍 JupyterLab主页介绍 下面介绍如何从运行中的Notebook实例打开JupyterLab。 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间 > Notebook”,进入Notebook页面。
自动化脚本快速部署推理服务(推荐) 场景描述 本方案提供了一键式安装脚本start.sh,用于快速部署推理服务。脚本中实现了以下步骤的自动化操作: 环境检查 拉取镜像 根据实际值更新rank_table_file.json 启动容器 进入容器启动服务 前提条件 已经完成资源购买。
示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_
部署模型为在线服务 模型准备完成后,您可以将模型部署为在线服务,对在线服务进行预测和调用。 约束与限制 单个用户最多可创建20个在线服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 由于在线运行需消耗资源,确保账户未欠费。 部署服务操作需要镜
创建Notebook实例 在开始进行模型开发前,您需要创建Notebook实例,并打开Notebook进行编码。 背景信息 Notebook使用涉及到计费,具体收费项如下: 处于“运行中”状态的Notebook,会消耗资源,产生费用。根据您选择的资源不同,收费标准不同,价格详情请