检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备Docker机器并配置环境信息 准备一台具有Docker功能的机器,如果没有,建议申请一台弹性云服务器并购买弹性公网IP,并在准备好的机器上安装必要的软件。 ModelArts提供了ubuntu系统的脚本,方便安装docker。 本地Linux机器的操作等同ECS服务器上的操作,请参考本案例。
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
/home/ma-user/work/model/llama-2-13b-chat-hf 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。
model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如
历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MindSpore+Ascend)
一般性问题 什么是ModelArts ModelArts与其他服务的关系 ModelArts与DLS服务的区别? 如何购买或开通ModelArts? 支持哪些型号的Ascend芯片? 如何获取访问密钥? 如何上传数据至OBS? 提示“上传的AK/SK不可用”,如何解决? 使用Mo
工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS Turbo的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
Standard模型训练 使用ModelArts Standard自定义算法实现手写数字识别 基于ModelArts Standard运行GPU训练任务
使用AppCode认证鉴权方式进行在线预测 场景描述 APPcode认证是一种简易的API调用认证方式,通过在HTTP请求头中添加参数X-Apig-AppCode来实现身份认证,无需复杂的签名过程,适合于客户端环境安全可控的场景,如内网系统之间的API调用。在ModelArts中
ModelArts入门指引 本文旨在帮助您了解ModelArts的基本使用流程以及相关的常见问题,帮助您快速上手ModelArts服务。 面向不同AI基础的开发者,本文档提供了相应的入门教程,帮助用户更快速地了解ModelArts的功能,您可以根据经验选择相应的教程。 面向AI开
自定义镜像: 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的算法;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,此时您可以使用预置框架 + 自定义镜像的功能,即选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。 此功能与直接基于
安全 责任共担 资产识别与管理 身份认证与访问控制 数据保护技术 审计与日志 服务韧性 监控安全风险 故障恢复 更新管理 认证证书 安全边界
数据标注场景介绍 由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 ModelArts为用户提供了标注数据的能力:
地址{image_url}获取请参见表1。 docker pull {image_url} Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.907-xxx.zip和算子包AscendCloud-OPP-6.3.907-xxx.zip到主机中,包获取路径请参见表2。
训练物体检测模型 自动学习物体检测项目,在图片标注完成后,通过模型训练得到合适的模型版本。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览页面,单击“数据标注”节点的“实例详情”进入数据标注页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的
训练声音分类模型 完成音频标注后,可以进行模型的训练。模型训练的目的是得到满足需求的声音分类模型。由于用于训练的音频,至少有2种以上的分类,每种分类的音频数不少于5个。 操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型的自动训练。 在新版自动学习页面,单击项目名称进入运
训练图像分类模型 完成图片标注后,可进行模型的训练。模型训练的目的是得到满足需求的图像分类模型。请参考前提条件确保已标注的图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您的数据集中的已标注的图片不低于100张。 请确保您的数据集中至少存在2种以上的图片分类,且每种分类的图片不少于5张。
训练文本分类模型 完成数据标注后,可进行模型的训练。模型训练的目的是得到满足需求的文本分类模型。由于用于训练的文本,至少有2种以上的分类(即2种以上的标签),每种分类的文本数不少于20个。因此在单击“继续运行”按钮之前,请确保已标注的文本符合要求。 操作步骤 在新版自动学习页面,
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
s中同步数据源以后看不到已标注,全部显示为未标注 如何使用soft NMS方法降低目标框堆叠度 ModelArts标注数据丢失,看不到标注过的图片的标签 如何将某些图片划分到验证集或者训练集? 物体检测标注时除了位置、物体名字,是否可以设置其他标签,比如是否遮挡、亮度等? ModelArts数据管理支持哪些格式?