检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
迁移评估 推理迁移包括模型迁移、业务迁移、精度性能调优等环节,是否能满足最终的迁移效果需要进行系统的评估。如果您仅需要了解迁移过程,可以先按照本文档的指导进行操作并熟悉迁移流程。如果您有实际的项目需要迁移,建议填写下方的推理业务迁移评估表,并将该调研表提供给华为云技术支持人员进行迁移评估,以确保迁移项目能顺利实施。
pTuning训练入口导入自动迁移工具 自动迁移适合没有使用CUDA高阶能力的简单场景,如果涉及自定义算子、主动申请GPU显存等操作,则需要额外进行手动迁移适配。 手动迁移解决报错问题。 在完成代码自动迁移后,如果训练代码运行时还出现错误,则代表需要手动迁移适配。针对代码报错处,需要
迁移过程使用工具概览 基础的开发工具在迁移的预置镜像和开发环境中都已经进行预置,用户原则上不需要重新安装和下载,如果预置的版本不满足要求,用户可以执行下载和安装与覆盖操作。 模型自动转换评估工具Tailor 为了简化用户使用,ModelArts提供了Tailor工具,将模型转换、
迁移环境准备 迁移环境准备有以下两种方式: 表1 方式说明 序号 名称 说明 方式一 ModelArts Notebook 该环境为在线调试环境,主要面向演示、体验和快速原型调试场景。 优点:可快速、低成本地搭建环境,使用标准化容器镜像,官方Notebook示例可直接运行。 缺点
应用迁移 模型适配 pipeline代码适配 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
ModelArts昇腾迁移调优工具总览表 使用场景 类别 工具名称 工具描述 工具安装 使用指导 PyTorch GPU训练迁移至PyTorch NPU训练 训练迁移 Transfer2NPU 代码自动迁移工具,通过简单import命令可将PyTorch训练脚本从GPU平台迁移至NPU平台运行。
ResNet50模型迁移到Ascend上进行推理 Stable Diffusion模型迁移到Ascend上进行推理:介绍如何将Stable Diffusion模型通过MSLite进行转换后,迁移在昇腾设备上运行。 图3 Stable Diffusion模型迁移到Ascend上进行推理
推理业务迁移评估表 通用的推理业务及LLM推理可提供下表进行业务迁移评估: 收集项 说明 实际情况(请填写) 项目名称 项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。 使用BertBase算法对用户在app上购买商品后的评论进行理解。
1GB。该数据集是从[imagenet-2012]数据集中筛选的少量数据集。 准备预训练权重。 下载Hugging Face权重。 迁移适配。 入口函数train.py导入自动迁移接口。 执行以下命令,导入自动迁移接口。 import torch_npu from torch_npu.contrib import
训练网络迁移总结 确保算法在GPU训练时,持续稳定可收敛。避免在迁移过程中排查可能的算法问题,并且要有好的对比标杆。如果是NPU上全新开发的网络,请参考PyTorch迁移精度调优排查溢出和精度问题。 理解GPU和NPU的构造以及运行的差别,有助于在迁移过程中分析问题并发挥NPU的
场景再考虑使用本指导自行迁移和调优。 迁移流程 模型迁移主要指将开源社区中实现过的模型或客户自研模型迁移到昇腾AI处理器上,需要保证模型已经在CPU/GPU上运行成功。迁移到昇腾AI处理器的主要流程如下图所示。 图1 迁移流程 父主题: GPU训练业务迁移至昇腾的通用指导
PyTorch迁移性能调优 性能调优总体原则和思路 MA-Advisor性能调优建议工具使用指导 MindStudio-Insight性能可视化工具使用指导 父主题: GPU训练业务迁移至昇腾的通用指导
PyTorch迁移精度调优 精度问题概述 精度调优总体思路 精度调优前准备工作 msprobe精度分析工具使用指导 父主题: GPU训练业务迁移至昇腾的通用指导
迁移效果校验 在pipeline适配完成后,需要验证适配后的效果是否满足要求,通过对比原始onnx pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite
ook实例。 ModelArts Lite DevServer 开通裸金属服务器资源请见DevServer资源开通,在裸金属服务器上搭建迁移环境请见裸金属服务器环境配置指导。 父主题: GPU推理业务迁移至昇腾的通用指导
实践,并对于实际的操作原理和迁移流程进行说明,包含迁移后的精度和性能验证、调试方法说明。 核心概念 推理业务昇腾迁移整体流程及工具链 图1 推理业务昇腾迁移整体路径 推理业务昇腾迁移整体分为七个大的步骤,并以完整工具链覆盖全链路: 迁移评估:针对迁移可行性、工作量,以及可能的性能收益进行大致的预估。
Language(AscendCL)调用一个或几个亲和算子组合的形式,代替原有GPU的实现方式,具体逻辑模型请参考PyTorch自动迁移。 在PyTorch模型迁移后进行训练的过程中,CPU只负责算子的下发,而NPU负责算子的执行,算子下发和执行异步发生,性能瓶颈在此过程中体现。在PyT
pipeline应用准备 当前迁移路径是从ONNX模型转换到MindIR模型,再用MindSpore Lite做推理, 所以迁移前需要用户先准备好自己的ONNX pipeline。下文以官方开源的图生图的Stable Diffusion v1.5的onnx pipeline代码为例进行说明。
当用户将大语言模型或者其他类型深度神经网络的训练从GPU迁移到昇腾AI处理器时,可能出现以下不同现象的模型精度问题。一般包括: Loss曲线与CPU/GPU差异不符合预期。 验证准确度与CPU/GPU差异不符合预期。 在迁移到NPU环境下训练发现以上问题时,说明精度可能存在偏差,
diffusers。 推理业务迁移到昇腾的通用流程,可参考GPU推理业务迁移至昇腾的通用指导。 由于Huggingface网站的限制,访问Stable Diffusion链接时需使用代理服务器,否则可能无法访问网站。 在Stable Diffusion迁移适配时,更多的时候是在适配Diffusers和Stable