检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常见错误原因和解决方法 显存溢出错误 网卡名称错误 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.911)
准备镜像环境 准备训练模型适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置物理机环境操作。 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新dataset_info.json文件;请务必在dataset_info
训练精度测试 约束限制 目前仅支持以下模型: qwen2.5-7b qwen2-7b qwen1.5-7b llama3.2-3b llama3.1-8b llama3-8b llama2-7b yi-6b 流程图 训练精度测试流程图如下图所示。 图1 训练精度测试流程图 执行训练任务
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
训练声音分类模型 完成音频标注后,可以进行模型的训练。模型训练的目的是得到满足需求的声音分类模型。由于用于训练的音频,至少有2种以上的分类,每种分类的音频数不少于5个。 操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型的自动训练。 在新版自动学习页面,单击项目名称进入运
训练文本分类模型 完成数据标注后,可进行模型的训练。模型训练的目的是得到满足需求的文本分类模型。由于用于训练的文本,至少有2种以上的分类(即2种以上的标签),每种分类的文本数不少于20个。因此在单击“继续运行”按钮之前,请确保已标注的文本符合要求。 操作步骤 在新版自动学习页面,
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
# 基于AscendSpeed的训练代码 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本
报错“An SSH installation couldn't be found”或者“Could not establish connection to instance xxx: 'ssh' ...”如何解决? 问题现象 或 VS Code连接Notebook一直提示选择证书
使用VSCode-huawei,报错:卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题 问题现象 使用华为自研的VS Code软件时,报错“卸载了‘ms-vscode-remote.remot-sdh’,它被报告存在问题”。 原因分析 Remote
华为云CCE集群纳管GPU裸金属服务器由于CloudInit导致纳管失败的解决方案 问题现象 创建出3台GPU裸金属服务器,使用A节点制作镜像,用于在CCE纳管裸金属服务器时,使用该镜像,但是纳管后发现服务器A纳管失败,剩下两台服务器纳管成功。 原因分析 在CCE纳管过程中,需要通过cloudinit
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
推理服务性能评测 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
执行微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行 install.sh文件,来安装依赖以及下载完整代码。
训练的权重转换说明 以llama2-13b举例,使用训练作业运行0_pl_pretrain_13b.sh脚本。脚本同样还会检查是否已经完成权重转换的过程。 如果已完成权重转换,则直接执行预训练任务。如果未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
常见错误原因和解决方法 显存溢出错误 网卡名称错误 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.911)
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train