检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表设计 总体上讲,良好的表设计需要遵循以下原则: 减少需要扫描的数据量。通过分区表的剪枝机制可以大幅减少数据的扫描量。 尽量减少随机I/O。通过聚簇可以实现热数据的连续存储,将随机I/O转换为连续I/O,从而减少扫描的I/O代价。 选择分区方案 当表中的数据量很大时,应当对表进行分区,一般需要遵循以下原则:
约束设计 DEFAULT和NULL约束 如果能够从业务层面补全字段值,那么,不建议使用DEFAULT约束,避免数据加载时产生不符合预期的结果。 给明确不存在NULL值的字段加上NOT NULL约束,优化器会在特定场景下对其进行自动优化。 给可以显式命名的约束显式命名。除了NOT
表设计 GaussDB是分布式架构。数据分布在各个DN上。总体上讲,良好的表设计需要遵循以下原则: 【关注】将表数据均匀分布在各个DN上。数据均匀分布,可以防止数据在部分DN上集中分布,从而导致因存储倾斜造成集群有效容量下降。通过选择合适的分布列,可以避免数据倾斜。 【关注】将表
表设计 GaussDB是分布式架构。数据分布在各个DN上。总体上讲,良好的表设计需要遵循以下原则: 将表数据均匀分布在各个DN上。数据均匀分布,可以防止数据在部分DN上集中分布,从而导致因存储倾斜造成集群有效容量下降。通过选择合适的分布列,可以避免数据倾斜。 将表的扫描压力均匀分
表设计 总体上讲,良好的表设计需要遵循以下原则: 减少需要扫描的数据量。通过分区表的剪枝机制可以大幅减少数据的扫描量。 尽量减少随机I/O。通过聚簇可以实现热数据的连续存储,将随机I/O转换为连续I/O,从而减少扫描的I/O代价。 选择分区方案 当表中的数据量很大时,应当对表进行分区,一般需要遵循以下原则:
表设计 总体上讲,良好的表设计需要遵循以下原则: 【关注】减少需要扫描的数据量。通过分区表的剪枝机制可以大幅减少数据的扫描量。 【关注】尽量减少随机I/O。通过聚簇/局部聚簇可以实现热数据的连续存储,将随机I/O转换为连续I/O,从而减少扫描的I/O代价。 选择存储方案 【建议】
约束设计 DEFAULT和NULL约束 如果能够从业务层面补全字段值,那么,不建议使用DEFAULT约束,避免数据加载时产生不符合预期的结果。 给明确不存在NULL值的字段加上NOT NULL约束。优化器会在特定场景下对其进行自动优化。 给可以显式命名的约束显式命名。除了NOT
约束设计 DEFAULT和NULL约束 【建议】如果能够从业务层面补全字段值,那么,就不建议使用DEFAULT约束,避免数据加载时产生不符合预期的结果。 【建议】给明确不存在NULL值的字段加上NOT NULL约束,优化器会在特定场景下对其进行自动优化。 【建议】给可以显式命名的约束显式命名。除了NOT
表设计 总体上讲,良好的表设计需要遵循以下原则: 【关注】减少需要扫描的数据量。通过分区表的剪枝机制可以大幅减少数据的扫描量。 【关注】尽量减少随机I/O。通过聚簇/局部聚簇可以实现热数据的连续存储,将随机I/O转换为连续I/O,从而减少扫描的I/O代价。 选择存储方案 【建议】
表设计 GaussDB是分布式架构。数据分布在各个DN上。总体上讲,良好的表设计需要遵循以下原则: 【关注】将表数据均匀分布在各个DN上。数据均匀分布,可以防止数据在部分DN上集中分布,从而导致因存储倾斜造成集群有效容量下降。通过选择合适的分布列,可以避免数据倾斜。 【关注】将表
表设计 GaussDB是分布式架构。数据分布在各个DN上。总体上讲,良好的表设计需要遵循以下原则: 将表数据均匀分布在各个DN上。数据均匀分布,可以防止数据在部分DN上集中分布,从而导致因存储倾斜造成集群有效容量下降。通过选择合适的分布列,可以避免数据倾斜。 将表的扫描压力均匀分
约束设计 DEFAULT和NULL约束 如果能够从业务层面补全字段值,那么,不建议使用DEFAULT约束,避免数据加载时产生不符合预期的结果。 给明确不存在NULL值的字段加上NOT NULL约束,优化器会在特定场景下对其进行自动优化。 给可以显式命名的约束显式命名。除了NOT
约束设计 DEFAULT和NULL约束 【建议】如果能够从业务层面补全字段值,那么,就不建议使用DEFAULT约束,避免数据加载时产生不符合预期的结果。 【建议】给明确不存在NULL值的字段加上NOT NULL约束,优化器会在特定场景下对其进行自动优化。 【建议】给可以显式命名的约束显式命名。除了NOT
约束设计 DEFAULT和NULL约束 如果能够从业务层面补全字段值,那么,不建议使用DEFAULT约束,避免数据加载时产生不符合预期的结果。 给明确不存在NULL值的字段加上NOT NULL约束,优化器会在特定场景下对其进行自动优化。 给可以显式命名的约束显式命名。除了NOT
约束设计 DEFAULT和NULL约束 【建议】如果能够从业务层面补全字段值,那么,就不建议使用DEFAULT约束,避免数据加载时产生不符合预期的结果。 【建议】给明确不存在NULL值的字段加上NOT NULL约束,优化器会在特定场景下对其进行自动优化。 【建议】给可以显式命名的约束显式命名。除了NOT
约束设计 DEFAULT和NULL约束 【建议】如果能够从业务层面补全字段值,那么,就不建议使用DEFAULT约束,避免数据加载时产生不符合预期的结果。 【建议】给明确不存在NULL值的字段加上NOT NULL约束,优化器会在特定场景下对其进行自动优化。 【建议】给可以显式命名的约束显式命名。除了NOT
字段设计 选择数据类型 在字段设计时,基于查询效率的考虑,一般遵循以下原则: 【建议】尽量使用高效数据类型。 选择数值类型时,在满足业务精度的情况下,选择数据类型的优先级从高到低依次为整数、浮点数、NUMERIC。 【建议】当多个表存在逻辑关系时,表示同一含义的字段应该使用相同的数据类型。
字段设计 选择数据类型 在字段设计时,基于查询效率的考虑,一般需要遵循以下原则: 尽量使用高效数据类型。 选择数值类型时,在满足业务精度的情况下,选择数据类型的优先级从高到低依次为整数、浮点数、NUMERIC。 当多个表存在逻辑关系时,表示同一含义的字段应该使用相同的数据类型。
字段设计 选择数据类型 在字段设计时,基于查询效率的考虑,一般遵循以下原则: 【建议】尽量使用高效数据类型。 选择数值类型时,在满足业务精度的情况下,选择数据类型的优先级从高到低依次为整数、浮点数、NUMERIC。 【建议】当多个表存在逻辑关系时,表示同一含义的字段应该使用相同的数据类型。
字段设计 选择数据类型 在字段设计时,基于查询效率的考虑,一般需要遵循以下原则: 尽量使用高效数据类型。 选择数值类型时,在满足业务精度的情况下,选择数据类型的优先级从高到低依次为整数、浮点数、NUMERIC。 当多个表存在逻辑关系时,表示同一含义的字段应该使用相同的数据类型。