服务管理 通过patch操作对服务进行更新 查询服务监控信息 查询服务列表 部署服务 查询支持的服务部署规格 查询服务详情 更新服务配置 删除服务 更新模型服务的单个属性 查询专属资源池列表 查询服务事件日志 启动停止边缘节点服务实例 查询服务更新日志 添加资源标签 删除资源标签
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
虚拟私有云VPC是一套为实例构建的逻辑隔离的、由用户自主配置和管理的虚拟网络环境。为云服务器、云容器、云数据库等资源构建隔离的、用户自主配置和管理的虚拟网络环境,提升用户资源的安全性,简化用户的网络部署。 登录ModelArts管理控制台,在左侧导航栏中选择“AI专属资源池 > 弹性集群
定”进入下载详情页面。根据数据集下载至OBS还是ModelArts数据集列表,填写不同配置信息: ModelArts数据管理模块在重构升级中,对未使用过数据管理的用户不可见。建议新用户选择将数据集下载至OBS使用。 将数据集下载至OBS “下载方式”选择“对象存储服务(OBS)”。
Kubernetes的临时存储卷,临时卷会遵从Pod的生命周期,与Pod一起创建和删除。 使用临时存储路径 HostPath 适用于以下场景: 容器工作负载程序生成的日志文件需要永久保存。 需要访问宿主机上Docker引擎内部数据结构的容器工作负载。 节点存储。多个容器可能会共享这一个存储,会存在写冲突的问题。
模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现文本分类
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 训练完成后,生成的权重文件保存路径为:/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/。
注册镜像。登录ModelArts控制台,在左侧导航栏选择“镜像管理”,进入镜像管理页面。单击“注册镜像”,镜像源即为推送到SWR中的镜像。请将完整的SWR地址复制到这里即可,或单击可直接从SWR选择自有镜像进行注册,类型加上“GPU”,如图1所示。 图1 注册镜像 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间
下载方式:ModelArts数据集。 目标区域:华北-北京四。 数据类型:图片。 数据集输出位置:用来存放输出的数据标注的相关信息,如版本发布生成的Manifest文件等。单击图标选择OBS桶下的空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 数据集输入位置:用来存放
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py #
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py #
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py #
true 用于指定是否覆盖缓存。如果设置为"overwrite_cache",则在训练过程中覆盖缓存。这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。
支持添加、修改、删除标签。标签详细用法请参见ModelArts如何通过标签实现资源分组管理。 图3 标签 最多支持添加20个标签。 Lite Cluster资源池配置管理 在资源池详情页面,单击“配置管理”,在配置管理页面,可以修改设置监控的命名空间、修改集群配置,配置镜像预热信息。 单击监
查看Standard专属资源池详情 资源池详情页介绍 登录ModelArts管理控制台,在左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”,进入“Standard资源池”列表。 在“Standard资源池”列表页的搜索框中,支持根据资源池的名称、资源池ID、资源池的
您即将访问非华为云网站,请注意账号财产安全