已找到以下 74 条记录
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
产品选择
没有找到结果,请重新输入
  • 组合作业 - 推荐系统 RES

    通用数据由特征工程“初始用户画像-物品画像-标准宽表生成”算子生成。其路径与“初始用户画像-物品画像-标准宽表生成”结果保存路径一致。 说明: 在使用通用格式数据之前,需要先进行特征工程算子计算。 通用格式数据:从用户属性表、物品属性表和用户操作行为表中提取用户、物品特征和用户行为,并生成JSON数据,即内部通用格式。

  • 过滤规则 - 推荐系统 RES

    用户操作行为表:初始数据中的用户操作行为表。 “通用格式” 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 通用格式时间:用户行为数据时间范围,可只有起始时间、结束时间或为空。

  • 创建在线服务 - 推荐系统 RES

    画像-物品画像-标准宽表生成算子作业输出的数据,用户属性来自于公共配置的全局特征信息文件。如过滤籍贯是广东且性别为男性的用户。 物品属性:指定在物品属性中需要过滤的字段,包含属性名和属性值。来源于画像数据,即特征工程中初始用户画像-物品画像-标准宽表生成算子作业输出的数据,物品属

  • 基本概念 - 推荐系统 RES

    被推荐的内容,一般是指业务系统提供的给其用户的商品。例如,某视频网站的视频。 召回策略 召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、 特征过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。 特征工程 特征工程常

  • 编辑或删除工作空间 - 推荐系统 RES

    “删除中”状态和默认生成的“default”工作空间不支持修改。 删除工作空间 如果工作空间不再使用,您可以删除工作空间释放资源。具体操作如下: 登录RES管理控制台,在左侧导航栏单击进入“工作空间”页面。 单击目标工作空间“操作”列的“删除”。 单击“确定”完成删除。 默认生成的“default”工作空间不支持删除。

  • 效果评估 - 推荐系统 RES

    默认开启调度。开启调度后,默认每天凌晨00:05开始执行。您也可以关闭调度手动执行效果评估作业。 指标类型 推荐服务效果评估指标,通过指标后的下拉框选择系统置指标或自定义指标。您可以单击添加指标,单击该指标后的删除指标。 点击PV 推荐点击PV率 自定义指标 自定义指标包含参数设置和指标设置两部分。

  • 更新服务 - 推荐系统 RES

    流程配置信息,请参见表5。 rank_uuid 否 String 排序策略生成的uuid。 feature_uuid 否 String 预处理的离线处理生成的uuid。 filter_uuid 否 String 过滤规则生成的uuid。 表4 rules参数说明 参数名称 是否必选 参数类型

  • 提交过滤作业 - 推荐系统 RES

    computing_resource 否 String 指定DLI运行任务的资源规格。 config_load_path 是 String 所选配置生成的文件在OBS上的存储路径。 表4 platform_parameter参数说明 参数名称 是否必选 参数类型 说明 cluster_name

  • 自定义场景简介 - 推荐系统 RES

    召回策略通过大数据计算或深度训练生成推荐候选集。 召回策略 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、历史行为过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。 过滤规则 特征工程 特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。

  • 离线作业简介 - 推荐系统 RES

    特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。 特征工程 召回策略 召回策略用于生成推荐的候选集,在原始数据中通过算法和规则匹配用户的候选集。 召回策略 排序策略 排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。

  • 部署服务 - 推荐系统 RES

    rank_conf参数说明 参数名称 是否必选 参数类型 说明 model_path 否 String 排序策略生成的模型在obs的文件路径。 etl_uuid 否 String 特征工程中生成排序训练样本生成的uuid。 is_attrWeight_rank 否 Boolean 是否配置属性排序。 表10

  • 创建自定义场景 - 推荐系统 RES

    离线计算逻辑,通过启动离线计算任务进行候选推荐结果集的生成。 各个召回策略的详细介绍请参见: 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐 基于交替最小二乘的矩阵分解推荐 业务规则-基于历史行为记忆生成候选集 业务规则-人工导入 基于特征匹配的召回策略 基于UCB的召回策略

  • 管理属性配置 - 推荐系统 RES

    输入场景名称单击“确定”,即完成场景创建。 在场景下拉列表中选择目标场景进行配置,配置完毕单击属性操作列的“保存”。 “任务配置地址”:用于存放创建作业时自动生成的JSON格式的配置源文件存储路径。 “全局特征信息文件”:根据全局特征信息文件规范准备并上传的全局特征信息文件路径。 “通用格式数据”:经过特征工程处理的宽表路径。

  • 如何开始使用RES? - 推荐系统 RES

    RES通过SDK上传实时数据,进行数据计算和处理,更新用户的相关数据。 上传实时数据 数据质量管理 数据质量管理操作可以将数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。 数据质量管理 选择并配置推荐业务 智能场景 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。

  • RES操作流程 - 推荐系统 RES

    RES通过SDK上传实时数据,进行数据计算和处理,更新用户的相关数据。 上传实时数据 数据质量管理 数据质量管理操作可以将数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。 数据质量管理 选择并配置推荐业务 智能场景 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。

  • 排序策略 - 推荐系统 RES

    您可以前往排序策略列表,查看作业的基本情况。在作业列表中,刚创建的作业“状态”为“计算中”,当作业“状态”变为“计算成功”时,表示作业运行结束,生成的候选集ID将使用于在线服务,为用户生成推荐列表。当作业“状态”变为“计算失败”时,您可以单击作业的名称,进入详情页面,通过查看日志等手段处理问题。 逻辑斯蒂回归-LR

  • 自定义场景(热度推荐) - 推荐系统 RES

    “推荐候选集”:选择步骤3配置的召回策略生成的召回结果集“hot-recall-DIREC”。 “过滤”:非必选,此样例进行黑名单过滤配置来完成在线的推荐结果过滤。 “行为过滤”:配置“时间区间”为“3”,“行为类型”选择“物品曝光”即为在线服务生成的结果会过滤近三天内用户浏览过的物品

  • 应用场景 - 推荐系统 RES

    用户产生的行为需要得到即时的反馈,同时结合用户的长期兴趣和短期兴趣进行个性化推荐。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户的兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性化媒资推荐。 场景优势 可以实现7*24小时,智能学习用户行为,构建兴趣模型。

  • 排序策略-离线特征工程 - 推荐系统 RES

    “个数比例”:个数比例是将全部数据按个数比例随机划分成训练集和测试集传入值。取值RAMDOM。 训练数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.7。 测试数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.3。 开启调度 开启调度,按照指定的调度策略定期执行作业。

  • 数据源管理简介 - 推荐系统 RES

    上传实时数据 RES通过SDK上传实时数据,进行数据计算和处理,更新用户的相关数据。 数据质量管理 数据质量管理操作可以将数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。 修改或删除数据源 对您已经创建的数据源进行修改,对不需要的数据源进行删除。 父主题: 数据源管理