检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
会下载历史版本占用磁盘空间。 随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。
会下载历史版本占用磁盘空间。 随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。
device_id, fmk_process.pid, fmk_process.returncode)) return fmk_process.returncode zero_ret_cnt +=
本案例中的训练作业需要通过SFS Turbo挂载盘的形式创建,因此需要将上述数据集、代码、权重文件从OBS桶上传至SFS Turbo中。 用户需要创建开发环境Notebook,并绑定SFS Turbo,以便能够通过Notebook访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS
会下载历史版本占用磁盘空间。 随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。
云上挂载路径 Notebook中挂载SFS后,SFS默认在“/home/ma-user/work”路径下。在创建训练作业时,设置SFS Turbo的“云上挂载路径”为“/home/ma-user/work”,使得训练环境下SFS也在“/home/ma-user/work”路径下。
长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS Turbo缓存中,并可被下游业务环节继续读取并处理,结果数据可以异步方式导出到关联的OBS对象存储中
st kps:domainKeypairs:createkmskey KMS kms:cmk:list 挂载SFS Turbo盘 SFS Turbo SFS Turbo FullAccess 子账号对SFS目录的读写操作权限。专属池Notebook实例挂载SFS(公共池不支持),且挂载的SFS不是当前子账号创建的。
系统容器异常退出 问题现象 在训练创建后出现“系统容器异常退出”的故障。 [ModelArts Service Log]2022-10-11 19:18:23,267 - file_io.py[1ine:748] - ERROR: stat:404 errorCode:NoSuchKey
signature_defs: signature.append(signature_def) if len(signature) == 1: model_signature = signature[0]
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
LOps打通了算法开发到交付运维的全流程。和以往的开发交付不同,以往的开发与交付过程是分离的,算法工程师开发完的模型,一般都需要交付给下游系统工程师。MLOps和以往的开发交付不同,在这个过程中,算法工程师参与度还是非常高的。企业内部一般都是有一个交付配合的机制。从项目管理角度上
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
Server上配置DCGM监控,用于监控Lite Server上的GPU资源。 DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控、诊断、系统验证、策略、电源和时钟管理、配置管理和审计等。 约束限制 仅适用于GPU资源监控。 前提条件
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下:
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下:
执行如下命令,查看自定义镜像的CPU架构。 docker inspect {自定义镜像地址} | grep Architecture ARM CPU架构的自定义镜像,上述命令回显如下。 "Architecture": "arm64" 规格中带有ARM字样的显示,为ARM CPU架构。 规格中未带有ARM字样的显示,为X86
], "max_tokens": args.max_tokens, "temperature": args.temperature, "ignore_eos": args.ignore_eos, "stream": args