检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
界面创建训练作业,创建时基于算法来源和训练框架又区分多种创建方式,具体请参见表2。 ModelArts Standard也支持通过调用API接口创建训练作业,请参见以PyTorch框架创建训练作业。 训练作业进阶功能 ModelArts Standard还支持以下训练进阶功能,例如:
set_flag('checkpoint_exclude_patterns', 'logits') 如果使用的是MoXing内置网络,其对应的关键字需使用如下API获取。此示例将打印Resnet_v1_50的关键字,为“logits”。 import moxing.tensorflow as mox
全流程开发)。 本文档介绍了如何在ModelArts管理控制台完成AI开发,如果您习惯使用API或者SDK进行开发,建议查看《ModelArts SDK参考》和《ModelArts API参考》获取帮助。 使用AI全流程开发的端到端示例,请参见 《快速入门》 和《最佳实践》。 Standard使用场景介绍
由于用户本地开发的代码需要上传至ModelArts后台,训练代码中涉及到依赖文件的路径时,用户设置有误的场景较多。 推荐通用的解决方案:使用os接口得到依赖文件的绝对路径,避免报错。 示例: |---project_root #代码根目录 |---BootfileDirectory
lArts创建训练作业,则该用户必须拥有 "modelarts:trainJob:create" 的权限才可以完成操作(无论界面操作还是API调用)。关于如何给一个用户赋权(准确讲是需要先将用户加入用户组,再面向用户组赋权),可以参考IAM的文档《权限管理》。 而ModelArt
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
异常中文描述 检测方法 处理建议 NT_NPU_DEVICE NPU 其他 npu dcmi device异常。 NPU设备异常,昇腾dcmi接口中返回设备存在重要或紧急告警。 可能是亚健康,建议先重启节点,如果重启节点后未恢复,发起维修流程。 NT_NPU_NET NPU 链路 npu
el-len。 e5-mistral-7B和gte-Qwen2-7B-instruct模型,使用openai启动服务,发送推理请求使用的是接口curl -X POST http://localhost:port/v1/embedding。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明
s Key Id和Secret Access Key)。 “project_id”即项目ID,获取方式如下: 在“我的凭证”页面,单击“API凭证”,在“项目列表”中可查看项目ID和名称(即“项目”)。多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。 图1 查看项目ID
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 父主题:
边缘节点,推送模型。 ModelArts基于Snt3高性能AI推理芯片的深度优化,具有PB级别的单日推理数据处理能力,支持发布云上推理的API百万个以上,推理网络时延毫秒。 父主题: Standard功能介绍
905版本)目录中。代码目录结构如下。精度测试使用到的mmlu和ceval数据集已经提前打包在代码中。 benchmark_eval ├──apig_sdk # ma校验包 ├──cpu_npu # 检测资源消耗 ├── config │
“选择标注团队”:任务类型设置为“指定标注团队”,需在此参数中指定一个团队,同时勾选此团队中某几个成员负责标注。下拉框中将罗列当前账号下创建的标注团队及其成员。 “选择标注接口人”:任务类型设置为“指定标注管理员”,需在所有团队的“Team Manager”中选择一人作为管理员。 “自动将新增图片同步给标注团队”
"status":"initializing" } --- apiVersion: batch.volcano.sh/v1alpha1 # The value cannot be changed. The volcano API must be used. kind: Job
示报错,建议调整文件大小使其符合要求,或联系技术支持人员调整文件大小限制。 “请求路径” 批量服务中调用模型的接口URL,表示服务的请求路径,此值来自模型配置文件中apis的url字段。 “映射关系” 如果模型输入是json格式时,系统将根据此模型对应的配置文件自动生成映射关系。
acceptSamples 给样本添加标签 dataset updateSamples 发送邮件给团队标注任务的成员 dataset sendEmails 接口人启动团队标注任务 dataset startWorkforceTask 更新团队标注任务 dataset updateWorkforceTask
acceptSamples 给样本添加标签 dataset updateSamples 发送邮件给团队标注任务的成员 dataset sendEmails 接口人启动团队标注任务 dataset startWorkforceTask 更新团队标注任务 dataset updateWorkforceTask