检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用前必读 在调用ModelArts API之前,请确保已经充分了解ModelArts相关概念,详细信息请参见产品介绍。 ModelArts提供了REST(Representational State Transfer)风格API,支持您通过HTTPS请求调用,调用方法请参见如何调用API。
failed_reasons Object 创建、启动失败原因,如表22所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 extend_params Map<String,String> 扩展参数。 表12 storage定义数据结构说明
fit(inputs=[input_data], job_name="cifar10-dis") 参数解释: inputs:可选参数,一个list,每个元素都是2生成的实例。 job_name:可选参数,训练任务名,便于区分和记忆。 本地单机调试训练任务开始后,SDK会依次帮助用户完成以下流程: 初始化
failed_reasons Object 创建、启动失败原因,如表22所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 extend_params Map<String,String> 扩展参数。 表15 storage定义数据结构说明
ate列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小
该转换脚本用于Fill-Mask 任务,若是其他类型任务请按实际场景修改转换脚本。 onnx模型转mindir格式,执行如下命令,转换完成后会生成bert_model.mindir文件。 converter_lite --fmk=ONNX --modelFile=bert_model
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
run.sh脚本测试ModelArts训练整体流程 自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下:
在ModelArts Standard使用run.sh脚本实现OBS和训练容器间的数据传输 自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下:
create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: #
下载JupyterLab文件到本地 在JupyterLab中开发的文件,可以下载至本地。关于如何上传文件至JupyterLab,请参见上传文件至JupyterLab。 不大于100MB的文件,可以直接从JupyterLab中下载到本地,具体操作请参见从JupyterLab中下载不大于100MB的文件至本地。
详情接口获取。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/notebooks 表1 路径参数 参数
service_name 服务名称,支持1-64位可见字符(含中文),名称可以包含字母、中文、数字、中划线、下划线。 说明: 该字段不填时默认为自动生成的服务名称。 否 str、Placeholder description 服务备注,默认为空,不超过100个字符。 否 str vpc_id
、在线服务的调用地址和在线服务的输入参数信息。 用户Token的获取请参见获取Token认证。获取Token认证时,由于ModelArts生成的在线服务API不支持domain范围的token,因此需获取使用范围为project的Token信息,即scope参数的取值为project。
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
状态码 状态码如表1那所示。 表1 状态码 状态码 编码 状态码说明 100 Continue 继续请求。 这个临时响应用来通知客户端,它的部分请求已经被服务器接收,且仍未被拒绝。 101 Switching Protocols 切换协议。只能切换到更高级的协议。 例如,切换到HTTP的新版本协议。
自动停止参数,如表10 auto_stop字段数据结构说明所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 failed_reasons Object 创建、启动失败失败原因,如表16所示。 extend_params
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
安全边界 云服务的责任共担模型是一种合作方式,其中云服务提供商和云服务客户共同承担云服务的安全和合规性责任。这种模型是为了确保云服务的安全性和可靠性而设计的。 根据责任共担模型,云服务提供商和云服务客户各自有一些责任。云服务提供商负责管理云基础架构,提供安全的硬件和软件基础设施,
在Lite Cluster资源池上使用Snt9B完成推理任务 场景描述 本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新建一个终端作为客户端来访问并测试该在线服务的功能。