已找到以下 62 条记录
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
产品选择
没有找到结果,请重新输入
  • 管理离线作业 - 推荐系统 RES

    细信息判读作业训练状态和查询训练结果。 复制离线作业 用户可以通过复制组合作业再次创建新的作业进行离线计算。生成的数据和原来的作业生成的数据相互独立,复制的离线作业会生成新的线上指定的UUID。 操作步骤如下: 登录RES管理控制台,在左侧菜单栏中选择“离线作业”下的目标推荐作业,进入作业列表。

  • 召回策略 - 推荐系统 RES

    略是指通过大数据计算或深度训练生成推荐候选集的算法策略。召回策略中内置了多种召回方式,您可根据自己场景选择。 基于综合行为热度推荐 基于综合行为热度推荐统计用户对物品所有行为的加权热度。如果选择用户分群,将生成每个分组的热度推荐;如果不选择,将生成全局热度推荐。 表1 基于综合行为热度推参数说明

  • 过滤规则 - 推荐系统 RES

    过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。对于每个需要过滤的行为,生成用户具有该行为的物品的列表。再对同用户的每种行为的物品列表进行“与”或者“或”的关系,最终生成用户-物品过滤表。 表1 过滤规则参数说明 参数名称 说明 名称 自定义过滤规则名称。由中文、英

  • 管理在线服务 - 推荐系统 RES

    作。您也可以通过单击在线服务名称查看在线服务的详细信息。 编辑服务 用户可以通过“编辑”在线服务修改该参数信息进行计算。生成的数据会覆盖原来的在线服务计算生成的数据。“部署中”的在线服务不支持编辑。操作步骤如下: 登录RES管理控制台,在左侧菜单栏中选择“在线服务”,进入服务列表。

  • 数据结构 - 推荐系统 RES

    作可以将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。 数据结构介绍 数据结构步骤的主要目的是读取用户上传的离线数据,解析用户特征和物品特征中每一个属性的数据格式、统计所有行为,然后保存解析生成的数据格式。 前提条件 已按照创建离线数据源操作指导完成数据源的创建。

  • 数据导入 - 推荐系统 RES

    数据,生成画像和宽表。 确认完成单击“执行”,待状态为“已完成”时,生成推荐系统内部通用的画像和宽表数据。 执行完成在页面下方会生成数据相关报告。 “数据导入报告”,显示数据“类型”、“总条目数”、“合法条目数”、“非法条目数”、“重复度”和“合法率”信息。 类型包括生成的用户、

  • 推荐引擎和排序引擎有什么区别? - 推荐系统 RES

    推荐引擎和排序引擎有什么区别? 推荐引擎 推荐引擎是以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。 排序引擎 排序引擎是以排序为业务逻辑的引擎,即用户提供排序集为输入,系统根据排序算法输出排序结果的引擎。 父主题: 自定义场景

  • 提交特征工程作业 - 推荐系统 RES

    提交特征工程作业 功能介绍 该接口用于特征工程处理,包含数据预处理,特征提取和排序训练样本生成等。 URI POST /v1/{project_id}/etl-job 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String

  • 召回策略 - 推荐系统 RES

    击设置数据参数。 通用格式 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 默认选择初始格式 时间选择 时间选择包括数据时间和行为时间跨度。

  • 通过DLF重新执行作业 - 推荐系统 RES

    通过DLF重新执行作业 推荐系统提供了重新执行作业的API,用来将任务以相同的配置重新执行一次,实现对离线任务生成结果的更新。以固定的周期定时调用此API,可保持结果处于一个较新的状态,以获得更好的推荐结果。 以上功能,我们也可以使用数据治理中心 DataArts Studio,

  • 特征工程 - 推荐系统 RES

    查看日志等手段处理问题。 初始用户画像-物品画像-标准宽表生成 初始用户画像-物品画像-标准宽表生成,是将初始格式数据(离线数据)处理成用户画像、物品画像以及内部通用格式数据。 表1 初始用户画像-物品画像-标准宽表生成参数说明 参数名称 说明 数据源 数据在OBS的存放路径。包

  • 产品功能 - 推荐系统 RES

    产品功能 数据源 数据源功能可以在用户上传数据后,将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。提供数据源智能检测,输出数据分布和数据质量信息等,智能完成特征工程。 智能场景 根据业务场景选择对应的智能推荐场景,快速搭建专属推荐

  • 提交组合作业 - 推荐系统 RES

    index_region_num 否 Integer 索引表预分区个数。只有特种工程中,初始用户画像-物品画像-标准宽表生成算子需要使用索引表预分区个数,其他离线算子因为不生成索引表不需要此参数。 示例 请求示例 { "job_name": "yyn-test", "job_description":

  • RES自定义策略 - 推荐系统 RES

    目前华为云支持以下两种方式创建自定义策略: 可视化视图创建自定义策略:无需了解策略语法,按可视化视图导航栏选择云服务、操作、资源、条件等策略内容,可自动生成策略。 JSON视图创建自定义策略:可以在选择策略模板后,根据具体需求编辑策略内容;也可以直接在编辑框内编写JSON格式的策略内容。 具体

  • 分词模型 - 推荐系统 RES

    响应参数请参见表2。 表2 响应参数说明 参数名称 是否必选 参数类型 说明 result 是 String 一个由抽取出来的无序的关键词集合生成的字符串,以空格连接。 示例 请求示例 { "mode":"keywords", "title":[ "在

  • 权限管理 - 推荐系统 RES

    权限管理 如果您需要对华为云上购买的RES资源,给企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(Identity and Access Management,简称IAM)进行精细的权限管理。该服务提供用户身份认证、权限分配、访问控制等功

  • 自定义场景简介 - 推荐系统 RES

    召回策略通过大数据计算或深度训练生成推荐候选集。 召回策略 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、历史行为过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。 过滤规则 特征工程 特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。

  • 离线作业简介 - 推荐系统 RES

    特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。 特征工程 召回策略 召回策略用于生成推荐的候选集,在原始数据中通过算法和规则匹配用户的候选集。 召回策略 排序策略 排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。

  • 组合作业 - 推荐系统 RES

    通用数据由特征工程“初始用户画像-物品画像-标准宽表生成”算子生成。其路径与“初始用户画像-物品画像-标准宽表生成”结果保存路径一致。 说明: 在使用通用格式数据之前,需要先进行特征工程算子计算。 通用格式数据:从用户属性表、物品属性表和用户操作行为表中提取用户、物品特征和用户行为,并生成JSON数据,即内部通用格式。

  • 过滤规则 - 推荐系统 RES

    用户操作行为表:初始数据中的用户操作行为表。 “通用格式” 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 通用格式时间:用户行为数据时间范围,可只有起始时间、结束时间或为空。