检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Server适配PyTorch NPU的LoRA训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL LoRA训练是指在已经训练好的SDXL模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。
Server适配PyTorch NPU的推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 本文基于diffusers和comfyui两个框架进行适配。 方案概览 本方案介绍了在ModelArts Lite
Server适配PyTorch NPU的训练指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展SD3-模型的训练过程。
模型则用Transformer替代了U-Net,处理图像生成和去噪等任务。核心思想是通过Transformer的自注意力机制来捕捉序列中的依赖关系,从而提高生成图像的质量。研究表明,具有较高GFLOPs的DiT模型在图像生成任务中表现更好,尤其是在ImageNet 512×512
1024 参数说明如下: --width :生成图片的宽 --height: 生成图片的长 --num_inference_steps:推理步数 --dynamo: 使用图模式。如果使用该参数,则首次编译时间较长,请耐心等待。 推理完成后,生成的图片image_1024x688.png保存在当前路径下,如下图所示。
1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开
Server适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展SD3模型的推理过程。
工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts Workflow提供标准化MLOps解决方案,降低模型训练成本 支持数据标注、数据处
Server适配PyTorch NPU推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展SD3模型的推理过程。
功能 子任务 ModelArts与OBS的关系 自动学习 数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 AI全流程开发 数据管理 数据集存储在OBS中。
功能 子任务 ModelArts与OBS的关系 自动学习 数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 AI全流程开发 数据管理 数据集存储在OBS中。
or directory 原因分析 编译生成so文件的cuda版本与训练作业的cuda版本不一致。 处理方法 编译环境的cuda版本与训练环境不一致,训练作业运行就会报错。例如:使用cuda版本为10的开发环境tf-1.13中编译生成的so包,在cuda版本为9.0训练环境中tf-1
Quality Discriminator对生成结果的质量进行规范,提高生成视频的清晰度。 引入预训练的唇音同步判别模型Pre-trained Lip-sync Expert,作为衡量生成结果的唇音同步性的额外损失,可以更好的保证生成结果的唇音同步性。 方案概览 本方案介绍了在ModelArts的Lite
推理服务,可供用户直接调用API完成推理业务。 约束限制 如果模型的“任务类型”是“文本问答”或“文本生成”,则支持在线推理。如果模型的“任务类型”是除“文本问答”和“文本生成”之外的类型(即自定义模型),则模型文件必须满足自定义模型规范(推理)才支持模型自定义推理。 当使用自定
自定义模型规范 AI Gallery除了支持托管文本生成和文本问答任务类型的模型,还支持托管其他任务类型的模型,其他任务类型的模型被称为自定义模型。但是托管的自定义模型要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义模型的使用流程 托管模型到AI
NPU日志收集上传 场景描述 当NPU出现故障,您可通过本方案收集NPU的日志信息。本方案中生成的日志会保存在节点上,并自动上传至华为云技术支持提供的OBS桶中,日志仅用于问题定位分析,因此需要您提供AK/SK给华为云技术支持,用于授权认证。 约束限制 当前仅支持在贵阳一、乌兰察布一使用该功能。
Wav2Lip推理基于Lite Server适配PyTorch NPU推理指导(6.3.907) Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输
job_id="your job id") info = estimator.get_job_metrics() print(info) 方式二:根据创建训练作业生成的训练作业对象查询。 info = job_instance.get_job_metrics(task_id="worker-0") print(info)
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
Estimator.delete_job_by_id(session=session, job_id="your job id") 方式二:根据创建训练作业生成的训练作业对象删除。 job_instance.delete_job() 参数说明 表1 delete_job_by_id请求参数说明 参数