检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
体验盘古驱动的应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中选择“应用百宝箱”,进入“应用百宝箱”页面。
、分行异常等影响模型训练的问题。问题和答案需要匹配,且不能有空值。 文件类型为CSV:每一行代表一个问答对,确保每个问题和答案的数据都以逗号分隔,每行的数据完整且格式正确,文件中每个字段或列都应有适当的数据类型,例如文本、数值、日期等。每一段需要准确完整的语义,符合主流价值观,并
在“平台管理 > 资产管理 > 模型推理资产”中,单击操作列“扩容”执行扩容操作。 图4 扩容模型推理资产 不同类型的模型在部署时,做占用的推理资产数量存在差异,部署模型时所占的推理资产数量与模型类型关系如下。 表1 部署模型 模型类型 推理资产占有数量 盘古-NLP-N1 系列模型 部署1实例占用0
李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让李晓对她产生了深深的喜爱。他还遇到了一位名叫王安石的大儒,他的智慧和博学让李晓深
控制生成文本多样性和质量。 最大口令限制 用于控制聊天回复的长度和质量。一般来说,设置较大的参数值可以生成较长和较完整的回复,但也可能增加生成无关或重复内容的风险。较小的参数值可以生成较短和较简洁的回复,但也可能导致生成不完整或不连贯的内容,请避免该值小于10,否则可能生成空值或极差的效果。
控制生成文本多样性和质量。 最大口令限制 用于控制聊天回复的长度和质量。一般来说,设置较大的参数值可以生成较长和较完整的回复,但也可能增加生成无关或重复内容的风险。较小的参数值可以生成较短和较简洁的回复,但也可能导致生成不完整或不连贯的内容,请避免该值小于10,否则可能生成空值或极差的效果。
LoRA轶值 / 8、16、32、64 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。 训练轮数 4 1~50 完成全部训练数据集训练的次数。 学习率 0.0001 0~1
与“西南-贵阳一”区域对应的project id。 sdk.iam.ak sdk.iam.sk 认证用的ak和sk。 登录“我的凭证 > 访问密钥”页面,依据界面操作指引获取Access Key(AK)和Secret Access Key(SK)。下载的访问密钥为credentials
上下文记忆的对话、搜索增强等场景。 Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。
上下文记忆的对话、搜索增强等场景。 Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。
一个AZ是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。 项目 华为云的区域默认对应一个项目,这个项目由系统预置,用来隔离物理区域间的资源(计算资源、存
科技行业公司的最大利润和市值是多少? 科技行业公司的最小利润和市值是多少? 科技行业公司的中位利润和市值是多少? 科技行业公司的总利润和市值是多少? … 来源四:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,再基于大模型(比如盘古提供的任意一个规格的基础功能模
如何调整推理参数,使模型效果最优 为什么微调后的模型,回答总是在重复某一句或某几句话 为什么微调后的模型,回答中会出现乱码 为什么微调后的模型,回答会异常中断 为什么微调后的模型,只能回答在训练样本中学过的问题 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 为什么微调后的模型,评估结果很好,但实际场景表现却很差
如何调整训练参数,使模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:
训练数据集是用于模型训练的实际数据集。通常,通过创建一个新的数据集步骤,可以生成包含某个特定场景数据的数据集。例如,这个数据集可能只包含用于训练摘要提取功能的数据。然而,在实际模型训练中,通常需要结合多种任务类型的数据,而不仅限于单一场景的数据。因此,实际的训练会混合不同类型的数据。例如,为
令牌(Token)是指模型处理和生成文本的基本单位。Token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成Token,然后根据模型的概率分布进行采样或者计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个Token:“over”和“weight”
访问密钥”页面,依据界面操作指引获取Access Key(AK)和Secret Access Key(SK)。下载的访问密钥为credentials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。
业等),需要依赖很深的领域背景知识,那么通用模型可能无法满足这些要求,需要在该领域的数据集上进行微调,以增强模型的泛化能力。 回答的风格或格式有特殊要求:虽然通用模型学习了相当可观的基础知识,但如果目标任务要求回答必须符合特定的风格或格式,这将造成和基础知识的数据分布差异。例如,
使用不含有标记的数据进行模型训练。 创建自监督微调训练任务 有监督训练 使用含有标记的数据进行模型训练,以学习输入和输出之间的映射关系。 创建有监督训练任务 模型评估 创建模型评估任务 训练完成后评估模型的回答效果。 创建模型评估任务 查看模型评估结果 查看模型评估指标和评估结果。 查看评估任务详情
好。 BLEU-4 模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。 困惑度 用来衡量大语言模型预测一个语言样本的能力,数值越低,准确率也就越高,表明模型性能越好。 指标适用的任务场景 任务答案是相对比较确定的,例如固定答案的问答任务、NL2SQL、NL2JSON、文本分类等。