检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"]。 个数不大于100000。 - directed 否 是否考虑边的方向 Boolean true或false false 表2 response_data参数说明 参数 类型 说明 path List 最短路径,格式:
取值为true。 false:不带额外约束,即找到的共同邻居为起点集和终点集对应邻域的交集。 true,带额外约束,这里指找到的共同邻居不仅是起点集和终点集邻域的交集,同时共同邻居集合中的每个点都至少有2个以上邻居节点在起点集和终点集中。 响应参数 参数 类型 说明 errorMessage
"Amy"],个数不大于100000。 directed 否 Boolean 是否考虑边的方向。取值为true或false。默认取值为false。 说明: 当数据集不包含inedge时,若directed=true,选择一个不依赖于Inedge的算法实现版本计算输出,性能会下降;若directed=false,会报错。
取值范围 默认值 filterName 否 用于进行时间过滤的时间属性名称 String 字符串:对应的点/边上的属性作为时间 - filterType 否 在点或边上过滤 String V:点上 E:边上 BOTH:点和边上 BOTH startTime 否 起始时间 String
true或false。 false:不带额外约束,即找到的共同邻居为起点集和终点集对应邻域的交集。 true,带额外约束,这里指找到的共同邻居不仅是起点集和终点集邻域的交集,同时共同邻居集合中的每个点都至少有2个以上邻居节点在起点集和终点集中。 true 表2 response_data参数说明
true或false。 false:不带额外约束,即找到的共同邻居为起点集和终点集对应邻域的交集。 true,带额外约束,这里指找到的共同邻居不仅是起点集和终点集邻域的交集,同时共同邻居集合中的每个点都至少有2个以上邻居节点在起点集和终点集中。 true 表2 response_data参数说明
取值范围 默认值 filterName 否 用于进行时间过滤的时间属性名称 String 字符串:对应的点/边上的属性作为时间 - filterType 否 在点或边上过滤 String V:点上 E:边上 BOTH:点和边上 BOTH startTime 否 起始时间 String
"Amy"],个数不大于100000。 directed 否 Boolean 是否考虑边的方向。取值为true或false。默认取值为false。 说明: 当数据集不包含inedge时,若directed=true,选择一个不依赖于Inedge的算法实现版本计算输出,性能会下降;若directed=false,会报错。
[[path1],[path2]] 其中,路径(path)的格式可参考:最短路径(Shortest Path)。 source String 路径的起点ID。 target String 路径的终点ID。 父主题: 算法API参数参考
统计信息展示 通过框选画布中点和边,在统计信息区会显示出当前所框选的点边对应的标签和节点权重的数量。关于点和边的概念请参考图数据格式。 统计信息展示的具体操作如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 单击绘图区右侧的,显示“条件过滤、属性和统计信息”页面,单击“统计信息”页签。
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景
动态拓展(temporal_bfs) 功能介绍 指定某个起始节点id,结合消息传递时间递增和BFS遍历顺序(Temporal BFS算法),搜索周围与之相关联的点,输出对应各节点的到达时间,以及与源起点之间的距离。 图1 原理展示 URL POST /ges/v1.0/{project_i
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
指定某个起始节点id,结合消息传递时间递增和BFS遍历顺序(temporal bfs算法),搜索周围与之相关联的点,输出对应各节点的到达时间以及和源起点之间的距离。具体操作步骤如下: 在左侧“动态图”操作区的“动态拓展”模块内填写参数: 开始和结束的时间以及属性值在上述章节时间轴设置中
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。 参数说明 无。 示例 单击运行,计算图的度数关联度,JSON结果会展示在查询结果区。
元数据 元数据的组成结构如下所示: 图2 元数据组成结构 GES的元数据用于定义点和边的属性信息,为XML格式的文件。 在元数据中包含了标签(Label)和属性(Property)。 标签(Label) 标签是属性的集合,描述了一个点或边拥有的所有属性的数据格式。 在不同的标签中,如
Pairs Shortest Paths)是寻找图中任意两点之间满足条件的最短路径。当前,考虑到实际应用场景,此算法需要用户指定起点集(sources)和终点集(targets),本算法将返回起点集合到终点集合之间满足条件的两两全最短路径。 适用场景 带过滤全对最短路径(Filtered
表3 data参数说明 参数 类型 说明 vertexNum Integer 图的点数。 edgeNum Integer 图的边数。 labelDetails(2.2.14) Object 不同label下的点边数目信息。若需要正常显示此字段,请按照表 labelDetails数据各要素说明建立点边索引。
labelDetails 否 Boolean 是否返回不同label下点边的数目信息,默认为false。为true时,返回不同label的点边数目。 请求示例 查询图的点数和边数等概要信息,true表示返回不同label的点边数目。 GET http://{SERVER_URL}/ges/v1