需要修改。 EPOCH 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。 TRAIN_ITERS 10 非必填。表示训练step迭代次数,会进行自动计算得出。 SEED 1234 随机种子数。每次数据采样时,保持一致。 SAVE_INTERVAL
yaml配置文件参数配置说明 本小节主要详细描述demo_yaml样例配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B
0910150953-6faa0ed 镜像发布到SWR,从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0、pytorch_2.2.0 MindSpore:MindSpore 2.3.0
如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的文本,至少有2种以上的分类,每种分类样本数据数不少20行。 创建数据集
卡davinci0。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 Step5 进入容器 通过容器名称进入容器中。默认使用ma-user用户执行后续命令。 docker exec -it ${container_name}
zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh 步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的如下格式,则需要执行convert_to_sharegpt
录 不会被保存的目录:容器启动时动态连接到宿主机的挂载目录或数据卷,这些内容不会被保存在镜像中。可以通过df -h命令查看挂载的动态目录,非“/”路径下的不会保存。 例如:持久化存储的部分“home/ma-user/work”目录的内容不会保存在最终产生的容器镜像中、动态挂载在“/data”下的目录不会被保存。
在“数据处理”页面,单击“创建”进入“创建数据处理”页面。 在创建数据处理页面,填写相关算法参数。 填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。
zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh 步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的如下格式,则需要执行convert_to_sharegpt
00 镜像发布到SWR, region:西南-贵阳一, 从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0、pytorch2.3.1 MindSpore:MindSpore 2.4.0
1112192643-c45ac6b 镜像发布到SWR,从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0、pytorch_2.2.0 MindSpore:MindSpore 2.3.0
00 镜像发布到SWR, region:西南-贵阳一, 从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0、pytorch2.3.1 MindSpore:MindSpore 2.4.0
data_sources=None, work_path=None, **kwargs) 推荐使用根据数据类型创建数据集,根据标注类型创建数据集的功能将会下线。 示例代码 示例一:根据数据类型创建图像数据集 from modelarts.session import Session from
SFT全参微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
LoRA微调训练 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
00 镜像发布到SWR, region:西南-贵阳一, 从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0、pytorch2.3.1 MindSpore:MindSpore 2.4.0
这些三方库的版本一致。 环境版本更新 这一项仅在条件允许的情况下进行,根据精度问题定位经验,部分问题是由于使用了较早版本的昇腾软件版本或者非商用发布的昇腾软件版本,所以推荐在条件允许的前提下配套安装最新商发版本的昇腾开发套件CANN Toolkit、昇腾驱动以及torch_npu
SFT全参微调训练任务 步骤1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
预训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
LoRA微调训练 步骤1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
您即将访问非华为云网站,请注意账号财产安全