检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
例如:算法支持的是GPU规格,创建训练作业时选择了ASCEND规格的资源类型。 处理方法 查看算法代码中设置的训练资源规格。 检查创建训练作业时所选的资源规格是否正确,重新创建训练作业选择正确的资源规格。 父主题: 云上迁移适配故障
训练作业失败,如何使用开发环境调试训练代码? 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
请通过查询预置算法接口获取model_id。填入model_id后app_url与boot_file_url和engine_id无需填写。 train_url 是 String 训练作业的输出文件OBS路径URL,默认为空,如:“/bucket/trainUrl/”。
进行模型训练时,主入口文件选择与训练工程同名的.py文件。 单击“上传”。 单击界面右上角的“训练”。 进入“训练任务配置”页面。 配置训练任务,如图5所示。 参数配置说明如下: AI引擎:AI算法运行平台。
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。
训练日志失败分析 在ModelArts Standard中训练作业遇到问题时,可首先查看日志,多数场景下的问题可以通过日志报错信息直接定位。
父主题: 预置算法运行故障
训练网络迁移总结 确保算法在GPU训练时,持续稳定可收敛。避免在迁移过程中排查可能的算法问题,并且要有好的对比标杆。如果是NPU上全新开发的网络,请参考PyTorch迁移精度调优排查溢出和精度问题。
ModelArts Standard平台提供了模型训练常用的预置框架,可以直接使用。 当预置框架不满足训练要求时,支持用户构建自定义镜像用于训练。 准备训练数据 训练数据除了训练数据集,也可以是预测模型。在创建训练作业前,需要先准备好训练数据。
父主题: 训练管理
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。
训练数据的csv文件不能包含表头,否则会导致训练失败。当前由于特征筛选算法限制,标签列建议放在数据集最后一列,否则可能导致训练失败。 由于ModelArts会自动对数据进行一些过滤,过滤后再启动训练作业。当预处理后的数据不满足训练要求时,也会导致训练作业运行失败。
查看训练作业资源占用情况 约束限制 训练作业的资源占用情况系统会自动保存30天,过期会被清除。 如何查看训练作业资源使用详情 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。
父主题: 训练作业
config_name String 训练作业参数的名称。 config_desc String 训练作业参数的描述信息。 worker_server_num Integer 训练作业worker的个数。 app_url String 训练作业的代码目录。
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
使用已有算法创建训练作业:选择创建方式(使用我的算法) 使用订阅算法创建训练作业:选择创建方式(使用订阅算法) 使用预置镜像创建训练作业:选择创建方式(自定义算法) 使用自定义镜像创建训练作:选择创建方式(使用自定义镜像) 配置训练参数:配置训练作业的输入、输出、超参、环境变量等参数
删除训练作业 功能介绍 删除训练作业。 此接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI DELETE /v1/{project_id}/training-jobs/{job_id} 参数说明如表1所示。
对于ChatGLMv3-6B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 Step2 创建SFT全参微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。