检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
worker会被调度到相同的机器上。由于训练数据对于ps没有用,因此在代码中ps相关的逻辑不需要下载训练数据。如果ps也下载数据到“/cache”,实际下载的数据会翻倍。例如只下载了2.5TB的数据,程序就显示空间不够而失败,因为/cache只有4TB的可用空间。 处理方法 在使
续费/开通自动续费/修改自动续费 对于包年/包月的节点,在“节点管理”页签中提供了续费、开通自动续费和修改自动续费功能,并支持对多个节点进行批量操作。 添加/编辑/删除资源标签 资源标签用于方便管理资源的计费账单。 勾选节点名称,选择节点列表上方的“添加/编辑资源标签”或“删除资源
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在问题时,
通过nvidia-smi -a查询到存在Pending Page Blacklist为Yes的记录,或多比特Register File大于0。对于Ampere架构的GPU,存在以下场景: 存在不可纠正的SRAM错误。 存在Remapping Failure记录。 dmsg中存在Xid 95事件。
ModelArts作为顶层服务,其部分功能依赖于其他服务的访问权限。本章节主要介绍对于IAM子账号使用ModelArts时,如何根据需要开通的功能配置子账号相应权限。 权限列表 子账号的权限,由主用户来控制,主用户通过IAM的权限配置功能设置用户组的权限,从而控制用户组内的子账号的权限。此处的授权列表均按照Mode
成本。 MaaS提供灵活的模型开发能力,同时基于昇腾云的算力底座能力,提供了若干保障客户商业应用的关键能力。 保障客户系统应用大模型的成本效率,按需收费,按需扩缩的灵活成本效益资源配置方案,有效避免了资源闲置与浪费,降低了进入AI领域的门槛。 架构强调高可用性,多数据中心部署确保
到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。
针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts。 约束与限制 关于自定义镜像规范和说明,请参见模型镜像规范。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。 前提条件 确保您使用的OBS目录与ModelArts在同一区域。
服务管理员可以通过标准的IAM授权动作,来对特定用户进行精细化的权限管控。 场景描述 MaaS服务的访问授权是通过ModelArts统一管理的,当用户已拥有ModelArts的访问授权时,无需单独配置MaaS服务的访问授权,当用户没有ModelArts的访问授权时,则需要先完成配置才能正常使用MaaS服务。
户组”,在用户组页面查找待授权的用户组名称,在右侧的操作列单击“授权”,勾选步骤2创建的自定义策略,单击“下一步”,选择授权范围方案,单击“确定”。 如果没有用户组,也可以创建一个新的用户组,并通过“用户组管理”功能添加用户,并配置授权。如果指定的子用户没有在用户组中,也可以通过“用户组管理”功能增加用户。
单模型性能调优AOE 使用AOE工具可以在模型转换阶段对于模型运行和后端编译过程进行执行调优。请注意AOE只适合静态shape的模型调优。在AOE调优时,容易受当前缓存的一些影响,建议分两次进行操作,以达到较好的优化效果(第一次执行生成AOE的知识库,在第二次使用时可以复用)。在该场景中,
服务升级关系着业务实现,不当的升级操作会导致升级期间业务中断的情况,请谨慎操作。 ModelArts支持部分场景下在线服务进行无损滚动升级。按要求进行升级前准备,做好验证,即可实现业务不中断的无损升级。 表1 支持无损滚动升级的场景 创建模型的元模型来源 服务使用的是公共资源池 服务使用的是专属资源池
服务升级关系着业务实现,不当的升级操作会导致升级期间业务中断的情况,请谨慎操作。 ModelArts支持部分场景下在线服务进行无损滚动升级。按要求进行升级前准备,做好验证,即可实现业务不中断的无损升级。 表1 支持无损滚动升级的场景 创建模型的元模型来源 服务使用的是公共资源池 服务使用的是专属资源池
训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。
云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和
_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/
_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/
_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/
转换关键参数准备 对应的模型转换成MindIR格式,通过后端绑定的编译形式来运行以达到更好的性能(类似静态图的运行模式),所以需要提前准备以下几个重点参数。 输入的inputShape,包含batch信息。 MSLite涉及到编译优化的过程,不支持完全动态的权重模式,需要在转换时确定对应的inp
出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户在创建Notebook的“子目录挂载”路径。若默认没有填写,则忽略。