检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
nvidia-fabricmanager版本号必须和nvidia-driver版本号保持一致,可参考安装nvidia-fabricmanag方法。 NCCL必须和CUDA版本相匹配,可单击此处可查看配套关系和安装方法。 使用该裸金属服务器制作自定义镜像时, 必须清除残留文件,请参考清理文件。 父主题: Lite Server
开发基于ModelArts提供的版本能够满足的时候,比如用户开发基于MindSpore1.X,建议用户使用预置镜像,这些镜像经过充分的功能验证,并且已经预置了很多常用的安装包,用户无需花费过多的时间来配置环境即可使用。 ModelArts默认提供了一组预置镜像供开发使用,这些镜像有以下特点:
-l | grep nvidia-fabricmanager 卸载并重新安装正确版本的nvidia-fabricmanager,验证CUDA成功。 处理方法 查看nvidia-fabricmanager的版本,若nvidia-fabricmanager版本与当前NVIDIA驱动版本
(2)执行nvidia-smi失败,提示Failed to initialize NVML: Driver/library version mismatch 处理方法 执行命令:lsmod | grep nvidia,查看内核中是否残留旧版nvidia,显示如下: nvidia_uvm
item())) if args.dry_run: break # 模型验证,设置模型为验证模式,加载验证数据,计算损失函数和准确率 def test(model, device, test_loader): model.eval()
nstruct-v0.1 权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging
2-3B-Instruct 权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging
1-70B-Instruct 权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging
requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x
对应python包使用错误,该python包确实没有对应的变量或者方法 第三方pip源中的python包版本更新,导致在训练作业中安装的python包的版本可能也会发生变化。如训练作业之前无此问题,后面一直有此问题,则考虑是此原因。 处理方法 通过Notebook调试。 安装时指定版本。如:pip
自定义python包中如果引用model目录下的文件,文件路径怎么写 如果容器中的文件实际路径不清楚,可以使用Python获取当前文件路径的方法获取。 os.getcwd() #获取文件当前工作目录路径(绝对路径) os.path.realpath(__ file __) #获得文件所在的路径(绝对路径)
作业调度到该节点而受到影响,并且使本次作业不受污点影响。当前可识别的故障类型如下,可通过隔离码及对应检测方法定位故障。 表1 隔离码 隔离码 分类 子类 异常中文描述 检测方法 A050101 GPU 显存 GPU ECC错误。 通过nvidia-smi -a查询到存在Pending
基于release()方法,提供了release_and_run()方法,支持用户在开发态发布并运行工作流,节省了前往console配置执行的操作。 使用该方法时需要注意以下几个事项: Workflow中所有出现占位符相关的配置对象时,均需要设置默认值,或者直接使用固定的数据对象 方法的执行依
/{algorithm_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 algorithm_id 是 String 算法ID。 请求参数 无 响应参数 无 请求示例 如下以修改uui
/v2/{project_id}/algorithms 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 metadata 否 AlgorithmMetadata
自定义镜像导入模型部署上线调用API报错 部署上线调用API报错,排查项如下: 确认配置文件模型的接口定义中有没有POST方法。 确认配置文件里url是否有定义路径。例如:“/predictions/poetry”(默认为“/”)。 确认API调用中body体中的调用路径是否拼接
--toolkit --samples --silent 验证NVIDIA安装结果。 nvidia-smi -pm 1 nvidia-smi /usr/local/cuda/bin/nvcc -V 安装Pytorch2.0和验证CUDA验证。 PyTorch2.0所需环境为Python3.10,
修改。 使用AK/SK认证时,您可以基于签名算法使用AK/SK对请求进行签名,也可以使用专门的签名SDK对请求进行签名。详细的签名方法和SDK使用方法请参见API签名指南。 签名SDK只提供签名功能,与服务提供的SDK不同,使用时请注意。 父主题: 如何调用API
DevServer上的微调方案,包括SFT全参微调、LoRA微调、DPO训练方案。 DPO(Direct Preference Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化