检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
由于安装的文件名格式不支持,导致出现“xxx.whl is not a supported wheel on this platform”报错,具体解决方法请参见2。 处理方法 安装第三方包 pip中存在的包,使用如下代码: import os os.system('pip install xxx')
2:'orange', 3:'banana'} 原因分析 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 处理方法 请您保持数据中训练集和验证集的标签数量一致。 父主题: 预置算法运行故障
VS Code连接开发环境失败时的排查方法 VS Code连接开发环境失败时,请参考以下步骤进行基础排查。 网络链路检查 在ModelArts控制台查看Notebook实例状态是否正常,确保实例无问题。 在VS Code Terminal里执行如下命令检测SSH命令是否可用; ssh
附录:工作负载Pod异常问题和解决方法 Pod状态为Pending 当Pod状态长时间为“Pending”,事件中出现“实例调度失败”的信息时,可根据具体事件信息确定具体问题原因。 图1 pod状态pending 通过以下命令打印Pod日志信息。 kubectl describe
附录:工作负载Pod异常问题和解决方法 Pod状态为Pending 当Pod状态长时间为“Pending”,事件中出现“实例调度失败”的信息时,可根据具体事件信息确定具体问题原因。 图1 pod状态pending 通过以下命令打印Pod日志信息。 kubectl describe
VS Code连接开发环境失败时的排查方法 VS Code连接开发环境失败时,请参考以下步骤进行基础排查。 网络链路检查 在ModelArts控制台查看Notebook实例状态是否正常,确保实例无问题。 在VS Code Terminal里执行如下命令检测SSH命令是否可用; ssh
8k_gen、humaneval_gen。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models
原因。具体参考链接为工作负载状态异常定位方法。 通过以下命令打印Pod日志信息。 kubectl describe pod ${pod_name} volcano资源调度失败 当volcano的资源出现争抢时,会出现下图中的问题。 解决方法: 通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。
GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 场景描述 本文指导如何进行节点内NVLINK带宽性能测试,适用的环境为:Ant8或者Ant1 GPU裸金属服务器, 且服务器中已经安装相关GPU驱动软件,以及Pytorch2.0。 GPU A系列裸金属服务器
原因。具体参考链接为工作负载状态异常定位方法。 通过以下命令打印Pod日志信息。 kubectl describe pod ${pod_name} volcano资源调度失败 当volcano的资源出现争抢时,会出现下图中的问题。 解决方法: 通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
nogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models
nogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法