检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如:pip install xxx==1.x.x 第三方pip源可能随时更新,可通过制作自定义镜像,来避免该影响。可参见文档模型训练中使。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。
Standard推理部署 ModelArts Standard推理服务访问公网方案 端到端运维ModelArts Standard推理服务方案 使用自定义引擎在ModelArts Standard创建模型 使用大模型在ModelArts Standard创建模型部署在线服务 第三方推理框架迁移到
─ autosmoothquant_ascend.txt #基于开源autosmoothquant适配过NPU的patch脚本 ├── build.sh #推理构建脚本 ├── requirements.txt # 第三方依赖
同时wss只支持客户端对服务端的单向认证,不支持服务端对客户端的双向认证。
同时wss只支持客户端对服务端的单向认证,不支持服务端对客户端的双向认证。
创建Notebook实例 功能介绍 创建Notebook实例,可以根据您指定的实例规格,不同AI引擎镜像,存储等相关参数,为您创建一个Notebook,您可以通过网页和SSH客户端访问Notebook实例。
*” 如何安装第三方包,安装报错的处理方法 下载代码目录失败 训练作业日志中提示“No such file or directory” 训练过程中无法找到so文件 ModelArts训练作业无法解析参数,日志报错 训练输出路径被其他作业使用 PyTorch1.0引擎提示“RuntimeError
使用AppCode认证鉴权方式进行在线预测 场景描述 APPcode认证是一种简易的API调用认证方式,通过在HTTP请求头中添加参数X-Apig-AppCode来实现身份认证,无需复杂的签名过程,适合于客户端环境安全可控的场景,如内网系统之间的API调用。
经典案例:在线服务预测报错MR.0105 出现其他情况,优先检查客户端和外部网络是否有问题。 以上方法均未解决问题,请联系系统管理员。 父主题: 服务预测
图1 Notebook中上传下载OBS文件 使用OBS客户端上传文件的操作指导:上传文件 方法一:在Notebook中通过Moxing上传下载OBS文件 MoXing是ModelArts自研的分布式训练加速框架,构建于开源的深度学习引擎TensorFlow、PyTorch等之上,使用
Manifest文件可以由用户、第三方工具或ModelArts标注系统生成。 Manifest文件名没有特殊要求,可以为任意合法文件名。 父主题: Manifest管理
python test.py 图2 部署在线服务 在XShell中新建一个终端,参考步骤5~7进入容器,该容器为客户端。执行以下命令验证自定义镜像的三个API接口功能。当显示如图所示时,即可调用服务成功。
├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖
├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖
├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖
├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖
├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖
客户端可以随时再次提交该请求而无需进行任何更改。 409 Conflict 服务器在完成请求时发生冲突。 返回该状态码,表明客户端尝试创建的资源已经存在,或者由于冲突请求的更新操作不能被完成。 410 Gone 客户端请求的资源已经不存在。
├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖
├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖