检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
强模型的泛化能力。取值范围:[0,1]。 给输入数据加噪音的尺度 给输入数据加噪音的尺度,定义了给输入数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 给输出数据加噪音的概率 给输出数据加噪音的概率,定
续费 包周期服务到期后,您可以通过手动续费来延长服务的有效期。 包周期服务到期后,如果在保留期结束前未完成续费,后续则不能再对已过保留期的服务进行续费操作,需重新购买对应的服务。
过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。
大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
token解析失败,请检查获取token的方法,请求体信息是否填写正确,token是否正确;检查获取token的环境与调用的环境是否一致。 token超时(token expires) ,请重新获取token,使用不过期的token。 请检查AK/SK是否正确(AK对应的SK错误,不匹配;AK/SK中多填了空格)。
法等。 零样本 对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性
问答匹配的精确度,模型生成句子与实际句子相比的精确程度,数值越高,表明模型性能越好。 表2 NLP大模型自动评测指标说明-使用评测模板 评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力
学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,
应用调试成功后,可以使用API调用该应用。 获取调用路径 应用的调用路径获取步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 在“工作台 > 应用”页面,单击所需应用的“ > 调用路径”。 图1 获取应用调用路径-1
部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建科学计算大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”
数据流通是将单个数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 视频类数据集当前仅支持发布为“默认格式”。 创建视频类数据集流通任务 创建视频类数据集流通任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码 为什么微调后的盘古大模型的回答会异常中断 为什么微调后的盘古大模型只能回答训练样本中的问题 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同
用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要包含一个签名值,该签名值以请求者的访问密钥
表示在模型训练初期,逐步增加学习率到预设值的训练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。 锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键概念,通
部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建预测大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时
部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建专业大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时
请求体参数配置完成后,单击“调试”,在响应结果中单击“响应头”,其中,X-Subject-Token参数的值为获取到的Token,如图4。 图4 获取Token值 获取的文本翻译API调用地址。华北-北京四区域的调用地址的格式如下: https://nlp-ext.cn-north-4.myhuaweicloud
部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建CV大模型部署任务后,可以查看模型的部署状态。 当状态显示为“运行中”时
看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。
Studio大模型开发平台针对视频类数据集预设了一套基础评估标准,涵盖了视频的清晰度、帧率、完整性、标签准确性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建视频类数据集评估任务。 创建视频类数据集评估标准步骤如下: