检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
否 查询的起始节点ID集合 String - 标准csv格式,ID之间以英文逗号分隔,例如:["Alice","Nana"] n 否 枚举的满足过滤条件的圈的个数的上限 Integer [1,100000] 100 statistics 否 是否输出所有满足过滤条件的圈的个数 Boolean
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_i
Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。 适用场景 聚类系数算法(Cluster
扩副本(2.2.23) 功能介绍 扩副本能力允许动态扩容多个从节点,扩容的从节点可以处理读请求,从而提高读请求性能。 一万边的图暂不支持扩副本。 进行扩副本操作后,不支持变更图规格操作。 如果要对图进行变更规格和扩副本两个操作,需要您先进行变更图规格操作,再进行扩副本操作。 持久化版图不支持调用接口进行扩副本操作。
temporal paths算法,返回距离最短的时序路径 foremost:运行foremost temporal paths算法,返回尽可能早的到达目标节点的时序路径 fastest:运行fastest temporal paths算法,返回耗费时间最短的时序路径 表4 dynamicRange
graph_id String 备份关联的图ID。 graph_name String 备份关联的图Name。 graph_status String 备份关联的图状态。 graph_size_type_index String 备份关联的图规格。 data_store_version
根据输入参数,执行Cesna算法。 Cesna算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的。此外,该算法还利用了节点属性对社区进行建模,即假设节点的属性也是根据社区关系生成的。 URI POST /ges/v1.0/{project_id}/
source 是 输入路径的起点ID String - - target 是 输入路径的终点ID String - - directed 否 是否考虑边的方向 Bool true或false false weight 否 边上权重 String 空或字符串 空:边上的权重、距离默认为“1”。
} ] } 添加边时的平行边处理策略: 通过cypher添加边的时候,允许添加重复边,此处的重复边的定义为<源点,终点>相同的两条边。 添加无label的边的方法: 通过Cypher添加边时必须指定label,所以指定待添加边的label为默认值”__DEFAULT__”即可,例如create
} ] } 添加边时的平行边处理策略: 通过cypher添加边的时候,允许添加重复边,此处的重复边的定义为<源点,终点>相同的两条边。 添加无label的边的方法: 通过Cypher添加边时必须指定label,所以指定待添加边的label为默认值”__DEFAULT__”即可,例如create
Cypher预置条件 当前的Cypher查询编译过程中使用了基于label的点边索引,如需正常使用Cypher,请使用新建索引API构建索引,示例如下: 点label索引添加命令示例,索引名称为cypher_vertex_index,索引类型为全局点索引。 POST http:/
String 备份关联的图ID。 graph_name String 备份关联的图Name。 graphStatus String 备份关联的图状态。 graphSizeTypeIndex String 备份关联的图规格。 dataStoreVersion String 备份关联的图版本。 arch
k核算法(kcore) 功能介绍 根据输入参数,执行K核算法。 K核算法是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
是否必选 类型 说明 vertices 否 List 结果包含的点集合。 edges 否 List 结果包含的边集合。 请求样例 观察某些节点群体结构的动态演化过程,算法名称为temporal_graph,动态分析的开始时间为${startTime},结束时间为${endTime}。
Match<Vertex>的gather Match<Vertex>上的Gather操作会将传入的Lambda函数中定义的所有操作作用在Match匹配的点的边上。 点匹配器Match仅接收包含两个输入参数的Lambda表达式。第一个参数指代边上的source点,第二个参数指代边上的target点。
根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
属性名称。 property name的长度不能超过256。 property name不允许包含<, >, &, ascci码14,15和30。 同一个label下不允许存在相同的property。 cardinality 是 String 属性的复合类型,包括: single list
) String source节点的个数不超过10000个。 - targets 是 终点ID集合,多个节点ID以逗号分隔(即,标准CSV输入格式) String target节点的个数不超过10000个。 - directed 否 是否考虑边的方向 Boolean true 或false,布尔型。
默认为false。 false:会查询图实例2分钟内的指标。 true:会查询实时监控指标,请求响应在3-5秒之间。 with_performance_metrics 否 Boolean 是否查询性能指标,会返回图实例性能指标和各个节点的指标。取值为true或者false,默认为tru
String 输入路径的起点ID。 directed 否 Boolean 是否考虑边的方向。取值为true或false。 说明: false当前版本在有权图上不支持。 当数据集不包含inedge时,若directed=true,选择一个不依赖于Inedge的算法实现版本计算输出,