检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据集输出位置 待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 说明: “数据集输出位置”不能与“数据集输入位置”为同一路径,且不能是“数据集输入位置”的子目录。“数据集输出位置”建议选择一个空目录。
参照字段是文字内容、位置固定不变的文本框区域。 参照字段为单行文本框,不可以框选竖版文字或跨行框选。 框选参照字段个数须建议大于4个,越多越好,并尽量分散在图片的四周。 参考字段尽量沿着文字边缘框选,精确框住对应文本行为佳。 核对右侧“框选参照字段”中的参照字段是否与框选的参照字段一致。 框选
部署服务 评估模板应用后,就可以部署模板应用至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的模板样式的图片。 前提条件 已在文字识别套件控制台选择“通用单模板工作流”新建应用,并完成评估模板步骤,详情请见评估应用。 操作步骤 在“应用开发>部署”页面完
取值,作为识别结果。 自定义正则提取 预过滤 对初始的待识别文字进行预处理。 左边输入框填写待识别文字中被替换字符的正则表达式。 右边输入框填写所替换的新字符。 不填写时,默认不做预处理。 如果需要多次预处理,可单击,填写新增的预处理规则。 例如: “字段类型名称”:“出生日期”
部署服务 评估模板应用后,就可以部署多模板应用至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的图片属于哪种模板以及识别图片中的文字。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”新建应用,并完成评估模板步骤,详情请见评估应用。 操作步骤 在
并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型
自然语言处理套件提供了通用文本分类工作流,您可以通过预置的工作流,自主上传训练数据,训练高精度的文本预测分类模型,适配不同行业场景的业务数据,快速获得定制服务。 图1 使用预置工作流开发应用 表1 使用预置工作流开发应用流程 流程 说明 详细指导 选择自然语言处理套件 根据您的实际使用需求选择自然语言处理套
数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中
操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 如果您上传的是未标注数据,您单击数据集操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 合并标签 针对所选择的训练数据集,如果每个标签的样本数量太少,可以选择合并标签。
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的商品标签准备图片数据。每个商品标签需要准备20个数据以上,为了训练出效果较好的模型,
换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。 基本概念 参照字段为模板图片和待识别图片中的公共文字部分,所有需要识别的图片中都要包含参照字段,且位置必须固定。 套件提供了自
删除技能 如果已创建的应用不再使用,您可以删除应用释放资源。 操作步骤 登录华为HiLens管理控制台,在左侧导航栏选择“技能开发>技能管理”。 默认进入“基础技能”页签。 单击“可训练技能”,切换至“可训练技能”页签。 选择技能单击操作列的“删除”,确认信息后单击“确定”,删除技能。
GiB”,适合纯CPU类型的负载运行的模型。 如果资源池选择专属资源池,勾选自己在ModelArts创建的专属资源池。 计算节点个数 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。
在商品识别场景下,如果上传的数据包含未标注数据,您需要创建SKU,即商品各类单品的图片,方便后续针对数据集中的数据进行自动标注。 如果数据集是已标注数据,您可以选择不创建SKU,直接执行下一步。 创建SKU 标注数据 针对已经选择的数据和SKU,在应用开发的“数据标注”页面,ModelArts
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。