检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
描述 max_quota Integer 配额允许设置的最大值。 update_time Integer 最后修改时间,UTC。如用户未修改过该资源配额,则该值默认为该工作空间的创建时间。 resource String 资源的唯一标识。 quota Integer 当前配额值。配额值为-1代表不限制配额。
开发环境的应用示例 本节通过调用一系列API,以创建开发环境实例为例介绍ModelArts API的使用流程。 概述 创建开发环境实例的流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调用查询支持的镜像列表接口查看开发环境的镜像类型和版本。
然后将remote.SSH.path属性添加到settings.json中,例如:"remote.SSH.path": "本地OpenSSH的安装路径" 父主题: VS Code连接开发环境失败故障处理
resource 是 String 资源标识。 quota 是 Integer 要修改的配额值。配额值为正整数或-1,-1代表不限制配额。配额值范围不能超过配额的最大值与最小值。可通过调用查询工作空间配额接口查询配额的最大值。 响应参数 状态码:200 表5 响应Body参数 参数 参数类型
来自市场订阅的Workflow。 latest_execution 否 ExecutionBrief object 最后一次执行工作流的概要信息。 run_count 否 Integer 工作流的已运行次数。 param_ready 否 Boolean 当前工作流的必选参数是否都已填完。
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
Integer 查询到当前用户名下的所有Workflow总数。 count Integer 查询到当前用户名下的所有符合查询条件的Workflow总数。 items Array of Workflow objects 查询到当前用户名下的所有符合查询条件的Workflow详情。 表4 Workflow
存在创建并使用的工作空间,以实际取值为准。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。 通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 表3 请求Body参数
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
startTimeInMillis: 查询的开始时间,格式为UTC毫秒,如果指定为-1,服务端将按(endTimeInMillis - durationInMinutes * 60 * 1000)计算开始时间 endTimeInMillis: 查询的结束时间,格式为UTC毫秒,如果指定
Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。 易开发性:提供了友好的开发和调试环境,便于模型的调整和优化。 高性能:通过自研特性和针对NPU的优化,如PD分离、前后处理、sample等,实现了高效的推理性能。 Ascend-vLLM架构
企业项目id,指定此参数会只返回该企业项目id下的工作空间。默认显示所有工作空间。 name 否 String 工作空间名称查询参数,指定此参数会模糊查询该名称的工作空间。默认显示所有工作空间。 filter_accessible 否 Boolean 该参数用于筛选可访问的工作空间。指定该参数为tru
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“不合格”,通过训练部署模型,实现产品的质检。 物体检测 物体检测项目,是检测图片中物体的类别与位置。需要添加图片,用合适的框标注物体作为训练集,进